Advertisement

The Spectrum of the Singularity Category of a Category Algebra

  • Ren WangEmail author
Article

Abstract

Let \({\mathscr {C}}\) be a finite projective EI category and k be a field. The singularity category of the category algebra \(k{\mathscr {C}}\) is a tensor triangulated category. We compute its spectrum in the sense of Balmer.

Keywords

Finite EI category Category algebra Tensor triangulated category Triangular spectrum 

Mathematics Subject Classification

Primary 18D10 18E30 Secondary 16D90 16G10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author is grateful to her supervisor Professor Xiao-Wu Chen for his encouragements and discussions. This work is supported by the Project funded by China Postdoctoral Science Foundation (2018M640584), the National Natural Science Foundation of China (Nos. 11522113, 11571329, 11671174 and 11671245), and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Balmer, P.: The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math. 588, 149–168 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchweitz, R.-O.: Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, Unpublished Manuscript (1987). Available at http://hdl.handle.net/1807/16682
  3. 3.
    Chen, X.-W.: Singularity categories, Schur functors and triangular matrix rings. Algebras Represent. Theory 12(2–5), 181–191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Green, J.A.: Polynomial Representations of \(GL_n\). Lecture Notes in Mathematics, vol. 830. Springer-Verlag, Berlin-New York (1980)Google Scholar
  5. 5.
    Klein, S.: Chow groups of tensor triangulated categories. J. Pure Appl. Algebra 220(4), 1343–1381 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Stevenson, G.: Support theory via actions of tensor triangulated categories. J. Reine Angew. Math. 681, 219–254 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Wang, R.: Gorenstein triangular matrix rings and category algebras. J. Pure Appl. Algebra 220(2), 666–682 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wang, R.: The MCM-approximation of the trivial module over a category algebra. J. Algebra Appl. 16(6) 1750109 (2017)Google Scholar
  9. 9.
    Wang, R.: The tensor product of Gorenstein-projective modules over category algebras. Commun. Algebra 46(9), 3712–3721 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Webb, P.: An Introduction to the Representations and Cohomology of Categories, Group representation Theory, pp. 149–173. EPFL Press, Lausanne (2007)zbMATHGoogle Scholar
  11. 11.
    Xu, F.: Spectra of tensor triangulated categories over category algebras. Arch. Math. (Basel) 103(3), 235–253 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Xu, F.: Tensor structure on \(k {\mathscr {C}}\)-mod and cohomology. Proc. Edinb. Math. Soc. (2) 56(1), 349–370 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations