# Concerning P-Sublocales and Disconnectivity

• Themba Dube
Article

## Abstract

Motivated by certain types of ideals in pointfree functions rings, we define what we call P-sublocales in completely regular frames. They are the closed sublocales that are interior to the zero-sublocales containing them. We call an element of a frame L that induces a P-sublocale a P-element, and denote by $${{\,\mathrm{Pel}\,}}(L)$$ the set of all such elements. We show that if L is basically disconnected, then $${{\,\mathrm{Pel}\,}}(L)$$ is a frame and, in fact, a dense sublocale of L. Ordered by inclusion, the set $$\mathcal {S}_\mathfrak {p}(L)$$ of P-sublocales of L is a complete lattice, and, for basically disconnected L, $$\mathcal {S}_\mathfrak {p}(L)$$ is a frame if and only if $${{\,\mathrm{Pel}\,}}(L)$$ is the smallest dense sublocale of L. Furthermore, for basically disconnected L, $$\mathcal {S}_\mathfrak {p}(L)$$ is a sublocale of the frame $$\mathcal {S}_\mathfrak {c}(L)$$ consisting of joins of closed sublocales of L if and only if L is Boolean. For extremally disconnected L, iterating through the ordinals (taking intersections at limit ordinals) yields an ordinal sequence
\begin{aligned} L\;\supseteq \;{{\,\mathrm{Pel}\,}}(L)\supseteq \;{{\,\mathrm{Pel}\,}}^2(L)\;\supseteq \;\cdots \; \supseteq \;{{\,\mathrm{Pel}\,}}^\alpha (L)\supseteq \;{{\,\mathrm{Pel}\,}}^{\alpha +1}(L)\;\supseteq \cdots \end{aligned}
that stabilizes at an extremally disconnected P-frame, that we denote by $${{\,\mathrm{Pel}\,}}^\infty (L)$$. It turns out that $${{\,\mathrm{Pel}\,}}^\infty (L)$$ is the reflection to L from extremally disconnected P-frames when morphisms are suitably restricted.

## Keywords

Completely regular frame $$F^\prime$$-frame Basically disconnected frame Extremally disconnected frame Sublocale P-sublocale Functor Reflective subcategory

## Mathematics Subject Classification

Primary: 06D22 Secondary: 13A15 18A22 54C30 54G05 54G10 54G15

## Notes

### Acknowledgements

Thanks are due to the referee for suggestions that have improved the paper, especially with regard to presentation.

## References

1. 1.
Atalla, R.E.: $$P$$-sets in $$F^\prime$$-spaces. Proc. Am. Math. Soc. 46, 125–132 (1974)
2. 2.
Baboolal, D., Banaschewski, B.: Compactification and local connectedness of frames. J. Pure Appl. Algebra 70, 3–16 (1991)
3. 3.
Ball, R.N., Walters-Wayland, J.: $$C$$- and $$C^{*}$$-quotients in pointfree topology. Dissert. Math. (Rozprawy Mat.) 412, 62 (2002)
4. 4.
Ball, R.N., Walters-Wayland, J., Zenk, E.R.: The $$P$$-frame reflection of a completely regular frame. Topol. Appl. 158, 1778–1794 (2011)
5. 5.
Banaschewski, B.: The Real Numbers in Pointfree Topology. Textos de Matemática Série B. Departamento de Matemática da Universidade de Coimbra, Coimbra (1997)
6. 6.
Banaschewski, B.: Nonmeausrable cardinals and pointfree topology. Math. Slovaca 65, 289–300 (2015)
7. 7.
Banaschewski, B., Gilmour, C.: Pseudocompactness and the cozero part of a frame. Comment. Math. Univ. Carolin. 37, 579–589 (1996)
8. 8.
Banaschewski, B., Pultr, A.: Booleanization. Cah. Topol. Géom. Differ. Catég. 37, 41–60 (1996)
9. 9.
Dow, A., Forster, O.: Absolute $$C^*$$-embedding of $$F$$-spaces. Pac. J. Math. 98, 63–71 (1982)
10. 10.
Dube, T.: Concerning P-frames, essential P-frames, and strongly zero-dimensional frames. Algebra Universalis 61, 115–138 (2009)
11. 11.
Dube, T.: Some ring-theoretic properties of almost $$P$$-frames. Algebra Universalis 60, 145–162 (2009)
12. 12.
Dube, T., Matlabyana, M.: Notes concerning characterizations of quasi-$$F$$ frames. Quaest. Math. 32, 551–567 (2009)
13. 13.
Dube, T., Walters-Wayland, J.: Coz-onto frame maps and some applications. Appl. Categ. Struct. 15, 119–133 (2007)
14. 14.
Ferreira, M.J., Picado, J., Pinto, S.M.: Remainders in pointfree topology. Topol. Appl. 245, 21–45 (2018)
15. 15.
Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton (1960)
16. 16.
Gutiérrez García, J., Picado, J.: On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218, 784–803 (2014)
17. 17.
Gutiérrez García, J., Kubiak, T., Picado, J.: Perfectness in locales. Quaest. Math. 40, 507–518 (2017)
18. 18.
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
19. 19.
Madden, J., Vermeer, J.: Lindelöf locales and realcompactness. Math. Proc. Camb. Philos. Soc. 99, 473–480 (1986)
20. 20.
Picado, J., Pultr, A., Tozzi, A.: Joins of closed sublocales. Houst. J. Math. (to appear)Google Scholar
21. 21.
Picado, J., Pultr, A.: Frames and Locales: Topology Without Points. Frontiers in Mathematics. Springer, Basel (2012)
22. 22.
Picado, J., Pultr, A.: New aspects of subfitness in frames and spaces. Appl. Categ. Struct. 24, 703–714 (2016)
23. 23.
Plewe, T.: Quotient maps of locales. Appl. Categ. Struct. 8, 17–44 (2000)