A Categorical Approach to Cyclic Cohomology of Quasi-Hopf Algebras and Hopf Algebroids
- 61 Downloads
Abstract
We apply categorical machinery to the problem of defining cyclic cohomology with coefficients in two particular cases, namely quasi-Hopf algebras and Hopf algebroids. In the case of the former, no definition was thus far available in the literature, and while a definition exists for the latter, we feel that our approach demystifies the seemingly arbitrary formulas present there. This paper emphasizes the importance of working with a biclosed monoidal category in order to obtain natural coefficients for a cyclic theory that are analogous to the stable anti-Yetter–Drinfeld contramodules for Hopf algebras.
Keywords
Cyclic homology Hopf algebras Quasi-Hopf algebras Hopf algebroids Monoidal categories ContramodulesMathematics Subject Classification
18D10 18E05 19D55 16T05Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
The authors wish to thank Masoud Khalkhali for stimulating questions and discussions. Furthermore, we are grateful to the referee for the constructive comments and useful references. The research of the second author was supported in part by the NSERC Discovery Grant Number 406709.
References
- 1.Böhm, G.: Hopf Algebroids, Handbook of Algebra Vol 6, edited by M. Hazewinkel, Elsevier, (2009), pp. 173–236Google Scholar
- 2.Böhm, G., Stefan, D.: A categorical approach to cyclic duality. J. Noncommutative Geom. 6(3), 481–538 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Brzezinski, T.: Hopf-cyclic homology with contramodule coefficients, Quantum groups and noncommutative spaces, 1–8, Aspects Math., E41, Vieweg + Teubner, Wiesbaden, (2011)Google Scholar
- 4.Bulacu, D., Panaite, F., Van Oystaeyen, F.: Quantum traces and quantum dimensions for quasi-Hopf algebras. Commun. Algebra 27(12), 6103–6122 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Connes, A., Moscovici, H.: Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys. 198, 199–246 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Connes, A., Moscovici, H.: Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48, 97–108 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Drinfeld, V.: Quasi-Hopf algebras. Leningr. Math. J. 1(6), 1419–1457 (1990)MathSciNetGoogle Scholar
- 8.Eilenberg, S., Moore, J.C.: Foundations of Relative Homological Algebra, vol. 55. American Mathematical Society, Providence (1965)zbMATHGoogle Scholar
- 9.Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra Number Theory 3(8), 959–990 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhauser, Y.: Hopf-cyclic homology and cohomology with coefficients. C. R. Math. Acad. Sci. Paris 338(9), 667–672 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y.: Stable anti-Yetter–Drinfeld modules. C. R. Acad. Sci. Paris, Ser. I 338, 587–590 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Hassanzadeh, M., Khalkhali, M., Shapiro, I.: Monoidal categories, 2-traces, and cyclic cohomology. arXiv:1602.05441
- 13.Jara, P., Stefan, D.: Hopf–cyclic homology and relative cyclic homology of Hopf–Galois extensions. Proc. London Math. Soc. 93(1), 138–174 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Kobyzev, I., Shapiro, I.: Anti-Yetter–Drinfeld modules for quasi-Hopf algebras. arXiv:1804.02031
- 15.Kowalzig, N.: When Ext is a Batalin–Vilkovisky algebra (2016). arXiv:1610.01229
- 16.Kowalzig, N., Posthuma, H.: The cyclic theory of Hopf algebroids. J. Noncommutative Geometry 5(3), 423–476 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
- 18.Majid, S.: Quantum double for Quasi–Hopf algebras. Lett Math Phys 45(1), 1–9 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Sakáloš, Š.: On categories associated to a Quasi-Hopf algebra. Commun. Algebra 45(2), 722–748 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Schauenburg, P.: Bialgebras over noncommutative rings and a structure theorem for Hopf bimodules. Appl. Categ. Struct. 6, 193–222 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Schauenburg, P.: Duals and doubles of quantum groupoids (\(\times _R\)-Hopf algebras). AMS Contemp. Math. 267, 273–299 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Shapiro, I.: Some invariance properties of cyclic cohomology with coefficients. arXiv:1611.01425