Advertisement

Applied Categorical Structures

, Volume 26, Issue 6, pp 1305–1324 | Cite as

Entourages, Density, Cauchy Maps, and Completion

  • Jorge Picado
  • Aleš Pultr
Article
  • 33 Downloads

Abstract

We study uniformities and quasi-uniformities (uniformities without the symmetry axiom) in the common language of entourages. The techniques developed allow for a general theory in which uniformities are the symmetric part. In particular, we have a natural notion of Cauchy map independent of symmetry and a very simple general completion procedure (perhaps more transparent and simpler than the usual symmetric one).

Keywords

Frame Locale Sublocale Uniform frame Quasi-uniform frame Entourage Uniform map Uniform dense embedding Cauchy map Complete Completion 

Mathematics Subject Classification

06D22 18B30 54E15 54D35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are most grateful to the referee for all valuable comments and suggestions that improved the paper and, in particular, for alerting us for a mistake in the previous version of 6.2.1. Further, we acknowledge support from grants P202/12/G061 (Grant Agency of the Czech Republic) and MTM2015-63608-P (Ministry of Economy and Competitiveness of Spain) and from the Centre for Mathematics of the University of Coimbra (UID/MAT/00324/2013 funded by FCT/MCTES and FEDER through the Partnership Agreement PT2020).

References

  1. 1.
    Ball, R.N., Pultr, A.: Extending semilattices to frames using sites and coverages. Math. Slovaca 64, 527–544 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banaschewski, B.: Completion in pointfree topology. Lecture Notes in Mathematics. University of Cape Town (1996)Google Scholar
  3. 3.
    Banaschewski, B.: Uniform completion in pointfree topology. In: Topological and Algebraic Structures in Fuzzy Sets. Trends Log. Stud. Log. Libr., vol. 20, pp. 19–56, Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  4. 4.
    Banaschewski, B., Hong, S.S., Pultr, A.: On the completion of nearness frames. Quaest. Math. 21, 19–37 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Banaschewski, B., Brümmer, G.C.L., Hardie, K.A.: Biframes and bispaces. Quaest. Math. 6, 13–25 (1983)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Banaschewski, B., Pultr, A.: Samuel compactification and completion of uniform frames. Math. Proc. Camb. Philos. Soc. 108, 63–78 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Banaschewski, B., Pultr, A.: Cauchy points of uniform and nearness frames. Quaest. Math. 19, 101–127 (1996)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Banaschewski, B., Pultr, A.: Completion and Samuel compactification of nearness and uniform frames. Port. Math. 69, 113–126 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dowker, C.H., Strauss, D.: Sums in the category of frames. Houst. J. Math. 3, 7–15 (1977)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fletcher, P., Lindgren, W.F.: Quasi-Uniform Spaces. Marcel Dekker, New York (1982)zbMATHGoogle Scholar
  11. 11.
    Frith, J., Hunsaker, W.: Completion of quasi-uniform frames. Appl. Categ. Struct. 7, 261–270 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Frith, J., Hunsaker, W., Walters-Wayland, J.: The Samuel compactification of a quasi-uniform frame. Topol. Proc. 23, 115–126 (1998)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hong, S.S., Kim, Y.K.: Cauchy completions of nearness frames. Appl. Categ. Struct. 3, 371–377 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Isbell, J.R.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Johnstone, P.T.: Stone Spaces. Cambridge Niversity Press, Cambridge (1982)zbMATHGoogle Scholar
  16. 16.
    Kim, Y.K.: Cauchy completions of quasi-uniform frames. Kyungpook Math. J. 38, 429–437 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kříž, I.: A direct description of uniform completion in locales and a characterization of LT-groups Cahiers Topologie Géom. Différ. Catég. 27, 19–34 (1986)zbMATHGoogle Scholar
  18. 18.
    Picado, J.: Weil uniformities for frames. Comment. Math. Univ. Carol. 36, 357–370 (1995)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Picado, J.: Frame quasi-uniformities by entourages. In: Symposium on Categorical Topology, pp. 161–175. University of Cape Town, Rondebosch (1999)Google Scholar
  20. 20.
    Picado, J.: Structured frames by Weil entourages. Appl. Categ. Struct. 8, 351–366 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Picado, J., Pultr, A.: Frames and Locales: Topology Without Points, Frontiers in Mathematics, vol. 28. Springer, Basel (2012)CrossRefGoogle Scholar
  22. 22.
    Picado, J., Pultr, A.: Entourages, covers and localic groups. Appl. Categ. Struct. 21, 49–66 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Picado, J., Pultr, A.: Notes on the product of locales. Math. Slovaca 65, 247–264 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pultr, A., Tozzi, A.: Completion and coproducts of nearness frames. In: Symposium on Categorical Topology, pp. 177–186. University of Cape Town, Rondebosch (1999)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, CMUCUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Applied Mathematics and ITI, MFFCharles UniversityPrague 1Czech Republic

Personalised recommendations