Advertisement

Bousfield Localisation and Colocalisation of One-Dimensional Model Structures

  • Scott Balchin
  • Richard Garner
Article
  • 5 Downloads

Abstract

We give an account of Bousfield localisation and colocalisation for one-dimensional model categories—ones enriched over the model category of 0-types. A distinguishing feature of our treatment is that it builds localisations and colocalisations using only the constructions of projective and injective transfer of model structures along right and left adjoint functors, and without any reference to Smith’s theorem.

Keywords

Quillen model structures Bousfield (co)localisation 

Mathematics Subject Classification

Primary 55U35 18A40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, Volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1994)CrossRefMATHGoogle Scholar
  2. 2.
    Barthel, T., Riehl, E.: On the construction of functorial factorizations for model categories. Algebr. Geom. Topol. 13(2), 1089–1124 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bayeh, M., Hess, K., Karpova, V., Kȩdziorek, M., Riehl, E., Shipley, B.: Left-induced model structures and diagram categories. In: Women in Topology: Collaborations in Homotopy Theory, Volume 641 of Contemporary Mathematics, pp. 49–81. American Mathematical Society (2015)Google Scholar
  4. 4.
    Beke, T.: Sheafifiable homotopy model categories. Math. Proc. Camb. Philos. Soc. 129(3), 447–475 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann-Roch (SGA 6), volume 225 of Lecture Notes in Mathematics. Springer, New York (1971)CrossRefGoogle Scholar
  6. 6.
    Bird, G.: Limits in 2-categories of locally-presented categories. Ph.D. thesis, University of Sydney (1984)Google Scholar
  7. 7.
    Blumberg, A.J., Riehl, E.: Homotopical resolutions associated to deformable adjunctions. Algebr. Geom. Topol. 14(5), 3021–3048 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bourke, J., Garner, R.: Algebraic weak factorisation systems I: accessible AWFS. J. Pure Appl. Algebra 220(1), 108–147 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bousfield, A.K.: Constructions of factorization systems in categories. J. Pure Appl. Algebra 9(2–3), 207–220 (1977)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bousfield, A.K., Friedlander, E.M.: Homotopy theory of \(\Gamma \)-spaces, spectra, and bisimplicial sets. In: Geometric Applications of Homotopy Theory (Proceedings of Conference, Evanston, IL, 1977), II, Volume 658 of Lecture Notes in Mathematics, pp. 80–130. Springer, Berlin (1978)Google Scholar
  11. 11.
    Cassidy, C., Hébert, M., Kelly, G.M.: Reflective subcategories, localizations and factorization systems. J. Aust. Math. Soc. Ser. A 38(3), 287–329 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ching, M., Riehl, E.: Coalgebraic models for combinatorial model categories. Homol. Homotopy Appl. 16(2), 171–184 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cole, M.: Mixing model structures. Topol. Appl. 153(7), 1016–1032 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dubuc, E.J.: Logical opens and real numbers in topoi. J. Pure Appl. Algebra 43(2), 129–143 (1986)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dugger, D.: Combinatorial model categories have presentations. Adv. Math. 164(1), 177–201 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Freyd, P.J., Kelly, G.M.: Categories of continuous functors I. J. Pure Appl. Algebra 2(3), 169–191 (1972)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien, Volume 221 of Lecture Notes in Mathematics. Springer, New York (1971)CrossRefGoogle Scholar
  18. 18.
    Grothendieck, A., Raynaud, M.: Revêtements étales et groupe fondamental (SGA 1), Volume 224 of Lecture Notes in Mathematics. Springer, New York (1971)Google Scholar
  19. 19.
    Hirschhorn, P.S.: Model Categories and Their Localizations, Volume 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2003)Google Scholar
  20. 20.
    Johnstone, P.T.: Calibrated toposes. Bull. Belg. Math. Soc. Simon Stevin 19(5), 891–909 (2012)MathSciNetMATHGoogle Scholar
  21. 21.
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, Volume 44 of Oxford Logic Guides, vol. 2. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  22. 22.
    Kock, A.: Synthetic Differential Geometry, Volume 51 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1981)Google Scholar
  23. 23.
    Lawvere, F.W.: Functorial semantics of algebraic theories. Ph.D. thesis, Columbia University (1963). Republished as: Reprints in Theory and Applications of Categories 5 (2004)Google Scholar
  24. 24.
    Makkai, M., Paré, R.: Accessible Categories: The Foundations of Categorical Model Theory, Volume 104 of Contemporary Mathematics. American Mathematical Society, Providence (1989)CrossRefMATHGoogle Scholar
  25. 25.
    Makkai, M., Rosický, J.: Cellular categories. J. Pure Appl. Algebra 218(9), 1652–1664 (2014)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Nikolaus, T.: Algebraic models for higher categories. K. Ned. Akad. van Wet. Indag. Math. N. Ser. 21(1–2), 52–75 (2011)MathSciNetMATHGoogle Scholar
  27. 27.
    Pultr, A., Tholen, W.: Free Quillen factorization systems. Georgian Math. J. 9(4), 807–820 (2002)MathSciNetMATHGoogle Scholar
  28. 28.
    Riehl, E.: Algebraic model structures. N. Y. J. Math. 17, 173–231 (2011)MathSciNetMATHGoogle Scholar
  29. 29.
    Ringel, C.M.: Diagonalisierungspaare. I. Math. Z. 117, 249–266 (1970)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Rosický, J., Tholen, W.: Factorization, fibration and torsion. J. Homotopy Relat. Struct. 2(2), 295–314 (2007)MathSciNetMATHGoogle Scholar
  31. 31.
    Salch, A.: The Bousfield localizations and colocalizations of the discrete model structure. Topol. Appl. 219, 78–89 (2017)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Stanculescu, A.E.: Note on a theorem of Bousfield and Friedlander. Topol. Appl. 155(13), 1434–1438 (2008)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sweedler, M.E.: Hopf Algebras. Mathematics Lecture Note Series. W. A. Benjamin Inc, New York (1969)Google Scholar
  34. 34.
    Univalent Foundations Program: Homotopy Type Theory: Univalent Foundations of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study (2013)

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of SheffieldSheffieldUK
  2. 2.Centre of Australian Category Theory, Department of MathematicsMacquarie UniversitySydneyAustralia

Personalised recommendations