Advertisement

Applied Categorical Structures

, Volume 26, Issue 3, pp 559–596 | Cite as

Commutants for Enriched Algebraic Theories and Monads

  • Rory B. B. Lucyshyn-Wright
Article
  • 39 Downloads

Abstract

We define and study a notion of commutant for \(\mathscr {V}\)-enriched \({\mathscr {J}}\)-algebraic theories for a system of arities \({\mathscr {J}}\), recovering the usual notion of commutant or centralizer of a subring as a special case alongside Wraith’s notion of commutant for Lawvere theories as well as a notion of commutant for \(\mathscr {V}\)-monads on a symmetric monoidal closed category \(\mathscr {V}\). This entails a thorough study of commutation and Kronecker products of operations in \({\mathscr {J}}\)-theories. In view of the equivalence between \({\mathscr {J}}\)-theories and \({\mathscr {J}}\)-ary monads we reconcile this notion of commutation with Kock’s notion of commutation of cospans of monads and, in particular, the notion of commutative monad. We obtain notions of \({\mathscr {J}}\)-ary commutant and absolute commutant for \({\mathscr {J}}\)-ary monads, and we show that for finitary monads on \(\text {Set}\) the resulting notions of finitary commutant and absolute commutant coincide. We examine the relation of the notion of commutant to both the notion of codensity monad and the notion of algebraic structure in the sense of Lawvere.

Keywords

Commutant Commutation Commutative monad Algebraic theory Commutative algebraic theory Universal algebra Monad Enriched category theory 

Mathematics Subject Classification

18C10 18C15 18C20 18C05 18D20 18D15 08A99 08B99 08C05 08C99 03C05 18D35 18D10 18D25 18A35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G.: Selected Papers on Algebra and Topology. Birkhäuser Boston Inc, Boston, MA (1987)zbMATHGoogle Scholar
  2. 2.
    Borceux, F., Day, B.: Universal algebra in a closed category. J. Pure Appl. Algebra 16(2), 133–147 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dlab, V., Ringel, C.M.: Rings with the double centralizer property. J. Algebra 22, 480–501 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dubuc, E.J.: Enriched semantics-structure (meta) adjointness. Rev. Un. Mat. Argentina 25, 5–26 (1970)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dubuc, E.J.: Kan Extensions in Enriched Category Theory, Lecture Notes in Mathematics, vol. 145. Springer, Berlin (1970)CrossRefzbMATHGoogle Scholar
  6. 6.
    Eilenberg, S., Kelly, G.M.: Closed categories. In: Proceedings of Conference Categorical Algebra (La Jolla, Calif., 1965), Springer, pp. 421–562 (1966)Google Scholar
  7. 7.
    Garner, R., López Franco, I.: Commutativity, J. Pure Appl. Algebra (2016), 1707–1751Google Scholar
  8. 8.
    Kelly, G.M.: Monomorphisms, epimorphisms, and pull-backs. J. Austral. Math. Soc. 9, 124–142 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kelly, G.M.: Structures defined by finite limits in the enriched context. I. Cahiers Topologie Géom. Différentielle 23(1), 3–42 (1982)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kelly, G.M.: Basic concepts of enriched category theory, Repr. Theory Appl. Categ. (2005), no. 10, Reprint of the 1982 original [Cambridge Univ. Press]Google Scholar
  11. 11.
    Kock, A.: Continuous Yoneda representation of a small category, Aarhus University Preprint, (1966)Google Scholar
  12. 12.
    Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. (Basel) 21, 1–10 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kock, A.: On double dualization monads. Math. Scand. 27(1970), 151–165 (1971)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lawvere, F.W.: Functorial semantics of algebraic theories, Dissertation, Columbia University, New York. Available. In: Repr. Theory Appl. Categ. 5, 1963 (2004)Google Scholar
  15. 15.
    Linton, F.E.J.: Autonomous equational categories. J. Math. Mech. 15, 637–642 (1966)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Linton, F.E.J.: Some aspects of equational categories. In: Proceeding of Conference Categorical Algebra (La Jolla, Calif., 1965), Springer, pp. 84–94 (1966)Google Scholar
  17. 17.
    Linton, F.E.J.: An outline of functorial semantics, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Springer, pp. 7–52 (1969)Google Scholar
  18. 18.
    Lucyshyn-Wright, R.B.B.: Riesz-Schwartz extensive quantities and vector-valued integration in closed categories, Ph.D. thesis, York University, (2013), arXiv:1307.8088
  19. 19.
    Lucyshyn-Wright, R.B.B.: A general theory of measure and distribution monads founded on the notion of commutant of a subtheory, Talk at Category Theory 2015. Aveiro, Portugal (2015)Google Scholar
  20. 20.
    Lucyshyn-Wright, R.B.B.: Enriched algebraic theories and monads for a system of arities. Theory Appl. Categ. 31, 101–137 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Lucyshyn-Wright, R.B.B.: Convex spaces, affine spaces, and commutants for algebraic theories. Appl. Categor. Struct. (2017). doi: 10.1007/s10485-017-9496-9
  22. 22.
    Lucyshyn-Wright, R.B.B.: Functional distribution monads in functional-analytic contexts. Adv. Math. (2017). http://dx.doi.org/10.1016/j.aim.2017.09.027
  23. 23.
    Power, J.: Enriched Lawvere theories. Theory Appl. Categ. 6, 83–93 (1999)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Wraith, G.C.: Algebraic theories, Lectures Autumn 1969. Lecture Notes Series, No. 22, Matematisk Institut, Aarhus Universitet, Aarhus, (1970) (Revised version 1975)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Mount Allison UniversitySackvilleCanada

Personalised recommendations