Advertisement

Applied Categorical Structures

, Volume 25, Issue 5, pp 893–905 | Cite as

Atiyah-Jänich Theorem for σ-C*-algebras

  • Kamran SharifiEmail author
Article
  • 51 Downloads

Abstract

K-theory for σ-C*-algebras (countable inverse limits of C*-algebras) has been investigated by N. C. Phillips (K-Theory 3, 441–478, 1989). We use his representable K-theory to show that the space of Fredholm modular operators with coefficients in an arbitrary unital σ-C*-algebra A, represents the functor X↦RK0(C(X,A)) from the category of countably compactly generated spaces to the category of abelian groups.

Keywords

Representable K-theory Inverse limit σ-C*-algebras Milnor \(\lim ^{1}\) exact sequence Fredholm operators Hilbert modules 

Mathematics Subject Classification (2010)

Primary 46L80 Secondary 19K35 46M20 46L08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.: K-theory. W. A. Benjamin Inc., New York-Amsterdam (1967)zbMATHGoogle Scholar
  2. 2.
    Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. IHES Publ. Math. 37, 5–26 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arveson, W.: The harmonic analysis of automorphism groups, operator algebras and applications, Part I (Kingston, Ont., 1980). In: Proceedings of the Symposium on Pure Mathematics, vol. 38, pp 199–269. Amer. Math. Soc., Providence, RI (1982)Google Scholar
  4. 4.
    Bhatt, S.J., Karia, D.J.: Complete positivity, tensor products and C*-nuclearity for inverse limits of C*-algebras. Proc. Indian Acad. Sci. Math. Sci. 101, 149–167 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourbaki, N.: Elements of Mathematics. General Topology. Part 1. Translated from the French Hermann, Publishers in Arts and Science, Publishers in Arts and Science, Paris; Addison-Wesley Publishing Co., Reading, Mass. London-Don Mills, Ont (1966)Google Scholar
  6. 6.
    Cohen, J.M.: The homotopy groups of inverse limits. Proc. London Math. Soc. 27, 159–177 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    El Harti, R., Lukács, G.: Bounded and unitary elements in pro-C*-algebras. Appl. Categ. Structures 14, 151–164 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Emerson, H., Meyer, R.: Dualizing the coarse assembly map. J. Inst. Math. Jussieu 5, 161–186 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Emerson, H., Meyer, R.: Equivariant representable K-theory. J. Topol. 2, 123–156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fragoulopoulou, M.: Topological algebras with involution. North Holland, Amsterdam (2005)Google Scholar
  11. 11.
    Frank, M., Sharifi, K.: Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C*-modules. J. Operator Theory 64, 377–386 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Franklin, S.P., Smith Thomas, B.V.: A survey of k ω-spaces. Topology Proc. 2, 111–124 (1977)MathSciNetGoogle Scholar
  13. 13.
    Gray, B.I.: Spaces of the same n-type, for all n. Topology 5, 241–243 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guentner, E., Yu, G.: A milnor sequence in operator k-theory, preprints; Department of Mathematical Sciences University of Hawaii at ManoaGoogle Scholar
  15. 15.
    Inoue, A.: Locally C*-algebras. Mem. Faculty Sci. Kyushu Univ. Ser. A 25, 197–235 (1971)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jänich, K.: Vektorraumbndel und der Raum der Fredholm-Operatoren. Math. Ann. 161, 129–142 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Joita, M.: Hilbert Modules Over Locally C*-Algebras. University of Bucharest Press (2006)Google Scholar
  18. 18.
    Kawamura, K.: Some inverse limits of Cuntz algebras, arXiv:1112.2769[math.OA] (2011)
  19. 19.
    Mahanta, S.: Twisted K-theory, K-homology and bivariant Chern-Connes type character of some infinite dimensional spaces. Kyoto J. Math. 54, 597–640 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Manuilov, V.M., Troitsky, E.V.: Hilbert C -Modules. Translated from the Russian Original by the Authors. Translations of Mathematical Monographs, vol. 226, p 2005. Amer. Math. Soc., Providence, RI (2001)Google Scholar
  21. 21.
    Milnor, J.: On axiomatic homology theory. Pacific J. Math. 12, 337–341 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mingo, J.A.: K-theory and multipliers of stable C*-algebras. Trans. Amer. Math. Soc. 299, 397–411 (1987)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Phillips, N.C.: Inverse limits of C*-algebras. J. Operator Theory 19, 159–195 (1988)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Phillips, N.C.: Inverse Limits of C*-Algebras and Applications, Operator Algebras and Applications, vol. 1. LMS Lecture Note Series 135, Cambridge University Press (1988)Google Scholar
  25. 25.
    Phillips, N.C.: Representable K-theory for σ-C*-algebras. K-Theory 3, 441–478 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Phillips, N.C.: Classifying algebras for the K-theory of C*-algebras. Canad. J. Math. 41(6), 1021–1089 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Phillips, N.C.: K-theory for Fréchet algebras. Internat. J. Math. 2, 77–129 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Phillips, N.C.: The Toeplitz operator proof of noncommutative Bott periodicity. J. Austral. Math. Soc. Ser. A 53, 229–251 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rosenberg, J.: A Minicourse on Applications of Non-Commutative Geometry to Topology. Surveys in Noncommutative Geometry, 1-41, Clay Math Proc., vol. 6. Amer. Math. Soc., Providence, RI (2006)Google Scholar
  30. 30.
    Schochet, C.L.: Topological methods for C*-algebras. III. Axiomatic homology. Pacific J. Math. 114(2), 399–445 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schochet, C.L.: Equivariant KK-theory for inverse limits of G-C*-algebras. J. Austral. Math. Soc. Ser. A 56(2), 183–211 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schochet, C.L.: The UCT, the Milnor sequence, and a canonical decomposition of the Kasparov groups. K-Theory 10(1), 49–72 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schochet, C. L.: A Pext Primer: Pure Extensions and \(\lim ^{1}\) for Infinite Abelian Groups. State University of New York, University at Albany, Albany, NY (2003)Google Scholar
  34. 34.
    Sharifi, K.: Generic properties of module maps and characterizing inverse limits of C*-algebras of compact operators. Bull. Malays. Math. Sci. Soc. 36, 481–489 (2013)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Switzer, R.: Algebraic Topology–Homotopy and Homology. Springer, Berlin (2002)zbMATHGoogle Scholar
  36. 36.
    Troitsky, E.V.: Classifying spaces for a K-functor connected with a C*-algebra. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 110, 96–98 (1985)MathSciNetGoogle Scholar
  37. 37.
    Voiculescu, D.: Dual algebraic structures on operator algebras related to free products. J. Operator Theory 17(1), 85–98 (1987)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)Google Scholar
  39. 39.
    Wegge-Olsen, N.E.: K-Theory and C -Algebras: a Friendly Approach. Oxford, Oxford University Press (1993)zbMATHGoogle Scholar
  40. 40.
    Weidner, J.: KK-Groups for generalized operator algebras. I, II. K-Theory 3(1), 57–77, 79–98 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of MathematicsShahrood University of TechnologyShahroodIran

Personalised recommendations