Applied Categorical Structures

, Volume 25, Issue 4, pp 569–602 | Cite as

Katětov Functors

  • Wiesław KubiśEmail author
  • Dragan Mašulović
Open Access


We develop a theory of Katětov functors which provide a uniform way of constructing Fraïssé limits. Among applications, we present short proofs and improvements of several recent results on the structure of the group of automorphisms and the semigroup of endomorphisms of some Fraïssé limits.


Katětov functor Amalgamation Fraïssé limit 

Mathematics Subject Classification (2010)

03C50 18A22 03C30 


  1. 1.
    Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cah. Topol. Géom. Différ. Catég. 43(2), 83–106 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ben Yaacov, I.: Fraïssé limits of metric structures. J. Symb. Log. 80, 100–115 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ben Yaacov, I.: The linear isometry group of the Gurarij space is universal. Proc. Amer. Math. Soc. 142, 2459–2467 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bilge, D., Melleray, J.: Elements of finite order in automorphism groups of homogeneous structures. Contrib. Discrete Math. 8, 88–119 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonato, A., Delić, D., Dolinka, I.: All countable monoids embed into the monoid of the infinite random graph. Discrete Math. 310, 373–375 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cameron, P., Nešetřil, J.: Homomorphism-homogeneous relational structures. Combin. Probab. Comput. 15, 91–103 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Caramello, O.: Fraïssé’s construction from a topos-theoretic perspective. Log. Univers. 8, 261–281 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dolinka, I.: The Bergman property for endomorphism monoids of some Fraïssé limits. Forum Math. 26, 357–376 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dolinka, I.: The endomorphism monoid of the random poset contains all countable semigroups. Algebra Univers. 56, 469–474 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dolinka, I., Mašulović, D.: A universality result for endomorphism monoids of some ultrahomogeneous structures. Proc. Edinb. Math. Soc. 55, 635–656 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Droste, M., Göbel, R.: A categorical theorem on universal objects and its application in abelian group theory and computer science. In: Proceedings of the International Conference on Algebra, Part 3, Novosibirsk, 1989, Contemp. Math., vol. 131, Amer. Math. Soc., Providence, RI, pp. 49–74 (1992)Google Scholar
  12. 12.
    Fraïssé, R.: Sur l’extension aux relations de quelques propriétés des ordres. Ann. Sci. Ecole Norm. Sup. 71(3), 363–388 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grätzer, G.: Universal algebra, 2nd ed. Springer-Verlag, New York (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Grebík, J.: An example of a Fraïssé class without a Katětov functor. arXiv:1604.00358
  15. 15.
    Hall, P.: Some constructions for locally finite groups. J. London Math. Soc. 34, 305–319 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Henson, C.W.: A family of countable homogeneous graphs. Pacific J. Math. 38, 69–83 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Herwig, B., Lascar, D.: Extending partial automorphisms and the profinite topology on free groups. Trans. Amer. Math. Soc 352, 1985–2021 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Irwin, T., Solecki, S.: Projective Fraïssé limits and the pseudo-arc. Trans. Amer. Math. Soc. 358, 3077–3096 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Katětov, M.: On universal metric spaces. General topology and its relations to modern analysis and algebra. VI (Prague, 1986), Res. Exp. Math., vol. 16, pp. 323–330. Heldermann, Berlin (1988)Google Scholar
  20. 20.
    Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15, 106–189 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Koubek, V., Reiterman, J.: Categorical constructions of free algebras, colimits, and completions of partial algebras. J. Pure Appl. Algebra 14(2), 195–231 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kubiś, W.: Injective objects and retracts of Fraïssé limits. Forum Math. 27, 807–842 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kubiś, W.: Fraïssé sequences: category-theoretic approach to universal homogeneous structures. Ann. Pure Appl. Logic 165, 1755–1811 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mac Lane, S.: Categories for the working mathematician, 2nd ed. Springer (1978)Google Scholar
  25. 25.
    Maltcev, V., Mitchell, J.D., Ruškuc, N.: The Bergman property for semigroups. J. London Math. Soc. 80, 212–232 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Péresse, Y.: Generating uncountable transformation semigroups. Ph.D. thesis, University of St Andrews (2009)Google Scholar
  27. 27.
    Solecki, S.: Notes on a strengthening of the Herwig-Lascar extension theorem. 2009. Unpublished note, available at
  28. 28.
    Urysohn, P.S.: Sur un espace métrique universel, I, II. Bull. Sci. Math. 51(2), 43–64, 74–90 (1927). JFM 53.0556.01zbMATHGoogle Scholar
  29. 29.
    Uspenskij, V.V.: On the group of isometries of the Urysohn universal metric space. Commentat. Math. Univ. Carolinae 31, 181–182 (1990)MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Cardinal Stefan Wyszyński University, College of ScienceWarsawPoland
  2. 2.Institute of MathematicsCzech Academy of SciencesPragueCzech Republic
  3. 3.Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations