Applied Categorical Structures

, Volume 24, Issue 5, pp 663–701 | Cite as

Regular Behaviours with Names

On Rational Fixpoints of Endofunctors on Nominal Sets
Article
  • 40 Downloads

Abstract

Nominal sets provide a framework to study key notions of syntax and semantics such as fresh names, variable binding and α-equivalence on a conveniently abstract categorical level. Coalgebras for endofunctors on nominal sets model, e.g., various forms of automata with names as well as infinite terms with variable binding operators (such as λ-abstraction). Here, we first study the behaviour of orbit-finite coalgebras for functors \(\bar F\) on nominal sets that lift some finitary set functor F. We provide sufficient conditions under which the rational fixpoint of \(\bar F\), i.e. the collection of all behaviours of orbit-finite \(\bar F\)-coalgebras, is the lifting of the rational fixpoint of F. Second, we describe the rational fixpoint of the quotient functors: we introduce the notion of a sub-strength of an endofunctor on nominal sets, and we prove that for a functor G with a sub-strength the rational fixpoint of each quotient of G is a canonical quotient of the rational fixpoint of G. As applications, we obtain a concrete description of the rational fixpoint for functors arising from so-called binding signatures with exponentiation, such as those arising in coalgebraic models of infinitary λ-terms and various flavours of automata.

Keywords

Nominal sets Final coalgebras Rational fixpoints Lifted functors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J.: Introduction to coalgebra. Theory Appl. Categ. 14, 157–199 (2005)MathSciNetMATHGoogle Scholar
  2. 2.
    Adámek, J., Levy, P., Milius, S., Moss, L., Sousa, L.: On final coalgebras of power-set functors and saturated trees. Appl. Categ. Struct. 23, 609–641 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Adámek, J., Milius, S.: Terminal coalgebras and free iterative theories. Inf. Comput. 204, 1139–1172 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Struct. Comput. Sci. 16(6), 1085–1131 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University Press (1994)Google Scholar
  6. 6.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats: Distributive Laws in Coalgebraic Modelling. PhD thesis, Vrije Universiteit Amsterdam (2004)Google Scholar
  8. 8.
    Bonsangue, M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1:7), 52 (2013)MathSciNetMATHGoogle Scholar
  9. 9.
    Courcelle, B.: Fundamental properties of infinite trees. Theoret. Comput. Sci. 25, 95–169 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H., Sheperdson, J. (eds.) Monadic Logic Colloquium 1973, vol. 80, pp. 175–230 North Holland (1975)Google Scholar
  11. 11.
    Gabbay, M., Pitts, A.: A new approach to abstract syntax involving binders. In: Logic in Computer Science, LICS 1999, pp. 214–224. IEEE (1999)Google Scholar
  12. 12.
    Gabbay, M., Pitts, A. M.: A new approach to abstract syntax involving binders. In: Logic in Computer Science, LICS 1999, pp. 214–224. IEEE Computer Society Press (1999)Google Scholar
  13. 13.
    Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien, vol. 221 of Lect.Notes Math Springer (1971)Google Scholar
  14. 14.
    Gaducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. Higher-order Symb Comput. 19, 283–304 (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Ginali, S.: Regular trees and the free iterative theory. J. Comput. Syst. Sci. 18, 228–242 (1979)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bulletin 62, 62–222 (1997)MATHGoogle Scholar
  17. 17.
    Johnstone, P.: Adjoint lifting theorems for categories of algebras. Bull. Lond. Math. Soc. 7, 294–297 (1975)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Joyal, A.: Foncteurs analytiques et espèces de structures. Lect. Notes Math. 1234, 126–159 (1986)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kock, A.: Strong functors and monoidal monads. Arch. Math. 23, 113–120 (1972)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kozen, D., Mamouras, K., Petrisan, D., Silva, A.: Nominal Kleene coalgebra. In: Automata, Languages, and Programming, ICALP 2015, vol. 9135 of Lect. Notes Comput. Sci., pp. 286–298. Springer (2015)Google Scholar
  22. 22.
    Kurz, A., Petrisan, D., Severi, P., de Vries, F.-J.: Nominal coalgebraic data types with applications to lambda calculus. Log. Meth. Comput. Sci. 9(4) (2013)Google Scholar
  23. 23.
    Kurz, A., Petrisan, D., Velebil, J.: Algebraic theories over nominal sets. CoRR, abs/1006.3027 (2010)Google Scholar
  24. 24.
    Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161 (1968)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Makkai, M., Paré, R.: Accessible categories: the foundation of categorical model theory, vol. 104 of Contemporary Math. Am. Math Soc. (1989)Google Scholar
  26. 26.
    Milius, S.: A sound and complete calculus for finite stream circuits. In: Logic in Computer Science, LICS 2010, pp. 449–458. IEEE Computer Society (2010)Google Scholar
  27. 27.
    Milius, S., Wißmann, T.: Finitary corecursion for the infinitary lambda calculus. In: Moss, L., Sobocinski, P. (eds.) Algebra and Coalgebra in Computer Science, CALCO 2015, vol. 35 of LIPIcs, pp. 336–351 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  28. 28.
    Petrişan, D.: Investigations into Algebra and Topology over Nominal Sets. PhD thesis, University of Leicester (2011)Google Scholar
  29. 29.
    Pitts, A.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 165–193 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pitts, A.: Nominal sets: Names and symmetry in computer science. Cambridge university press (2013)Google Scholar
  31. 31.
    Plotkin, G., Turi, D.: Towards a mathematical operational semantics. In: Logic in Computer Science, LICS 1997, pp. 280–291. IEEE (1997)Google Scholar
  32. 32.
    Rutten, J.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249 (1), 3–80 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Rutten, J.: Rational streams coalgebraically. Log. Meth Comput. Sci. 4(3), 9 (2008)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Tzevelekos, N.: Full abstraction for nominal general references. In: Logic in Computer Science, LICS 2007, pp. 399–410. IEEE (2007)Google Scholar
  35. 35.
    Worrell, J.: On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Stefan Milius
    • 1
  • Lutz Schröder
    • 1
  • Thorsten Wißmann
    • 1
  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations