Accessible Model Categories
Article
First Online:
- 106 Downloads
- 1 Citations
Abstract
We prove that a weak factorization system on a locally presentable category is accessible if and only if it is small generated in the sense of R. Garner. Moreover, we discuss an analogy of Smith’s theorem for accessible model categories.
Keywords
Weak factorization system Locally presentable category Cofibrant generation Accessible weak factorization system Accessible model categoryPreview
Unable to display preview. Download preview PDF.
References
- 1.Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: Weak factorization systems and topological functors. Appl. Cat. Struct. 10, 237–249 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cah. Top. Géom Diff. Cat. CLIII, 83–106 (2002)Google Scholar
- 3.Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press (1994)Google Scholar
- 4.Adámek, J., Rosický, J.: On pure quotients and pure subobjects. Czech. Math. Jour. 54, 623–636 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Beke, T.: Sheafifiable homotopy model categories. Math. Proc. Cambr. Phil. Soc. 129, 447–475 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Bourke, J., Garner, R.: Algebraic weak factorization systems I: accessible awfs. Jour. Pure Appl. Alg. 220, 148–174 (2016)CrossRefzbMATHGoogle Scholar
- 7.Christensen, J.D., Hovey, M.: Quillen model structures for relative homological algebra. Math. Proc. Cambr. Phil. Soc. 133, 261–293 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Garner, R.: Understanding the small object argument. Appl. Categ. Struct. 17, 247–285 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Grandis, M., Tholen, W.: Natural weak factorization systems. Arch. Math. (Brno) 42, 397–408 (2006)MathSciNetzbMATHGoogle Scholar
- 10.Makkai, M., Paré, R.: Accessible categories: The Foundation of Categorical Model Theory, Cont. Math. 104. AMS (1989)Google Scholar
- 11.Riehl, E.: Algebraic model structures. New York Jour. Math. 17, 173–231 (2011)MathSciNetzbMATHGoogle Scholar
- 12.Rosický, J.: On combinatorial model categories. Appl. Categ. Str. 17, 303–316 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Rosický, J., Tholen, W.: Factorization, fibration and torsion. J. Homot. Rel. Struct. 2, 295–314 (2007)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 2015