Advertisement

Applied Categorical Structures

, Volume 25, Issue 1, pp 147–154 | Cite as

The Dual and the Double of a Hopf Algebroid are Hopf Algebroids

  • Peter SchauenburgEmail author
Article
  • 62 Downloads

Abstract

Let H be a ×-bialgebra in the sense of Takeuchi. We show that if H is ×-Hopf, and if H fulfills the finiteness condition necessary to define its skew dual H , then the coopposite of the latter is ×-Hopf as well. If in addition the coopposite ×-bialgebra of H is ×-Hopf, then the coopposite of the Drinfeld double of H is ×-Hopf, as is the Drinfeld double itself, under an additional finiteness condition.

Keywords

Bialgebroid Hopf algebroid Duality 

Mathematics Subject Classifications (2010)

16T99 18D10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhm, G.: Hopf algebroids. In: Handbook of algebra, volume 6 of Handb. Algebr., vol. 6, pp 173–235. Elsevier/North-Holland, Amsterdam (2009)CrossRefGoogle Scholar
  2. 2.
    Kassel, C.: Quantum Groups, Volume 155 of Graduate Texts in Mathematics. Springer, New York (1995)Google Scholar
  3. 3.
    Majid, S.: Representations, duals and quantum doubles of monoidal categories. In: Proceedings of the Winter School on Geometry and Physics (Srni, 1990), number 26, pp. 197–206 (1991)Google Scholar
  4. 4.
    Schauenburg, P.: Duals and doubles of quantum groupoids (×R-Hopf algebras). In: New trends in Hopf algebra theory (La Falda, 1999), volume 267 of Contemp. Math., pp 273–299. Amer. Math. Soc., Providence (2000)CrossRefGoogle Scholar
  5. 5.
    Schauenburg, P.: Module categories of finite Hopf algebroids, and self-duality. Trans. Amer. Math. Soc, (to appear)Google Scholar
  6. 6.
    Takeuchi, M.: Groups of algebras over \(A\otimes \overline A\). J. Math. Soc. Japan 29(3), 459–492 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bourgogne, UMR5584 CNRSUniversité Bourgogne Franche-ComtéDijonFrance

Personalised recommendations