Advertisement

Applied Categorical Structures

, Volume 24, Issue 6, pp 845–873 | Cite as

A Tale of Three Homotopies

  • Vladimir Dotsenko
  • Norbert Poncin
Article

Abstract

For a Koszul operad \(\mathcal {P}\), there are several existing approaches to the notion of a homotopy between homotopy morphisms of homotopy \(\mathcal {P}\)-algebras. Some of those approaches are known to give rise to the same notions. We exhibit the missing links between those notions, thus putting them all into the same framework. The main nontrivial ingredient in establishing this relationship is the homotopy transfer theorem for homotopy cooperads due to Drummond-Cole and Vallette.

Keywords

Homotopy algebras Homotopy morphisms Models for operads 

Mathematics Subject Classifications (2010)

18G55 18D50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammar, M., Poncin, N.: Coalgebraic approach to the Loday infinity category, stem differential for 2n-ary graded and homotopy algebras. Ann. Inst. Fourier 60(1), 355–387 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baez, J.C., Crans, A.S.: Higher-dimensional algebra. VI. Lie 2-algebras. Theory Appl. Categ. 12, 492–538 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. In: Categories in algebra, geometry and mathematical physics”, Contemp. Math., vol. 431, pp. 31–58 (2007)Google Scholar
  4. 4.
    Berglund, A.: Rational homotopy theory of mapping spaces via Lie theory for L algebras. arXiv:1110.6145
  5. 5.
    Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347, p. x+257. Springer, Berlin (1973)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bonavolontà, G., Poncin, N.: On the category of Lie n-algebroids. J. Geom. Phys. 73, 70–90 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bousfield, A.K., Gugenheim, V.K.A.M.: On PL De Rham theory and rational homotopy type. Mem. AMS 178, ix+94 (1976)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Buijs, U., Murillo, A.: Algebraic models of non-connected spaces and homotopy theory of L -algebras. Adv. Math. 236, 60–91 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buijs, U., Murillo, A.: The Lawrence–Sullivan construction is the right model of I +. Algebr. Geom. Topol. 13(1), 577–588 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Canonaco, A.: L -algebras and quasi-isomorphisms. In: Seminari di Geometria Algebrica 1998–1999. Scuola Normale Superiore, Pisa (1999)Google Scholar
  11. 11.
    Cheng, X.Z., Getzler, E.: Transferring homotopy commutative algebraic structures. Journal of Pure and Applied Algebra 212(11), 2535–2542 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dehling, M., Vallette, B.: Symmetric homotopy theory for operads. arXiv:1503.02701
  13. 13.
    Deligne, P.: Letters to L. Breen (1994)Google Scholar
  14. 14.
    Dolgushev, V.A.: Erratum to: “A proof of Tsygan’s formality conjecture for an arbitrary smooth manifold”. arXiv:0703113
  15. 15.
    Dotsenko, V., Khoroshkin, A.: Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Doubek, M.: On resolutions of diagrams of algebras. arXiv:1107.1408
  17. 17.
    Drinfeld, V.: Letter to Vadim Schechtman, September 1988. English translation available online via the http://math.harvard.edu/~tdp/translation.pdf
  18. 18.
    Drummond-Cole, G., Vallette, B.: The minimal model for the Batalin–Vilkovisky operad. Selecta Math. (N.S.) 19(1), 1–47 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Johan, L.: Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15(3), 233–245 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fukaya, K.: Floer homology and mirror symmetry. II. Adv. Stud. Pure Math. 34, 31–127 (2002)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Getzler, E.: Lie theory for nilpotent L -algebras. Ann. of Math. (2) 170(1), 271–301 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76 (1), 203–272 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. 67, 43–96 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Grabowski, J., Khudaverdyan, D., Poncin, N.: The supergeometry of Loday algebroids. J. Geom. Mech. 5(2), 185–213 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Granåker, J.: Strong homotopy properads. Int. Math. Res. Not. IMRN 14, 26 (2007). Art. ID rnm044MathSciNetzbMATHGoogle Scholar
  26. 26.
    Grandis, M.: On the homotopy structure of strongly homotopy associative algebras. J. Pure Appl. Algebra 134(1), 15–81 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hinich, V.: Homological algebra of homotopy algebras. Comm. Algebra 25(10), 3291–3323 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Huebschmann, J.: Origins and breadth of the theory of higher homotopies. In: Higher Structures in Geometry and Physics, Progr. Math., vol. 287, pp. 25–38. Birkhäuser/Springer, New York (2011)CrossRefGoogle Scholar
  29. 29.
    Khudaverdyan, D., Mandal, A., Poncin, N.: Higher categorified algebras versus bounded homotopy algebras. Theory Appl. Categ. 25, 251–275 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato, Vol. I (Dijon), Math. Phys. Stud., 21, Kluwer, Dordrecht, 2000, 255–307Google Scholar
  31. 31.
    Lapin, S.V.: Differential perturbations and D -differential modules. Mat. Sb. 192(11), 55–76 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lawrence, R., Sullivan, D.: A free differential Lie algebra for the interval. Preprint available online via the http://www.ma.huji.ac.il/∼ruthel/papers/06bernoulli6.pdf
  33. 33.
    Lefèvre-Hasegawa, K.: Sur les A-infini catégories. PhD thesis, University Paris 7, arXiv:0310337
  34. 34.
    Loday, J.-L., Vallette, B.: Algebraic operads. Grundlehren der mathematischen Wissenschaften, vol. 346. Springer (2012)Google Scholar
  35. 35.
    Lyubashenko, V.: Category of A -categories. Homology Homotopy Appl. 5(1), 1–48 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mac Lane, S.: Homology. Classics in mathematics. Springer (1995)Google Scholar
  37. 37.
    Manetti, M.: Deformation theory via differential graded Lie algebras. In: Seminari di Geometria Algebrica 1998–1999. Scuola Normale Superiore, Pisa (1999)Google Scholar
  38. 38.
    Markl, M.: Homotopy algebras via resolutions of operads. Rend. Circ. Mat. Palermo (2) Suppl. 63, 157–164 (2000)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Markl, M.: Homotopy diagrams of algebras. Rend. Circ. Mat. Palermo (2) Suppl. 69, 161–180 (2002)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Markl, M.: Models for operads. Comm. Algebra 24(4), 1471–1500 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math. 634, 51–106 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Nijenhuis, A., Richardson Jr., R.W.: Cohomology and deformations in graded Lie algebras. Bull. Amer. Math. Soc. 72, 1–29 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Petersen, D.: The operad structure of admissible G-covers. Algebra Number Theory 7(8), 1953–1975 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Quillen, D.: Rational homotopy theory. Ann. of Math. (2) 90, 205–295 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sati, H., Schreiber, U., Stasheff, J.: L -algebra connections and applications to String- and Chern-Simons n-transport. In: Quantum field theory, pp. 303–424. Birkhäuser, Basel (2009)CrossRefGoogle Scholar
  46. 46.
    Schechtman, V.: Remarks on formal deformations and Batalin-Vilkovisky algebras. arXiv:9802006
  47. 47.
    Schlessinger, M., Stasheff, J.: Deformation theory and rational homotopy type. University of North Carolina preprint, 1979, see also the arXiv:1211.1647
  48. 48.
    Vallette, B.: Homotopy theory of homotopy algebras. arXiv:1411.5533
  49. 49.
    van der Laan, P.P.I.: Operads up to homotopy and deformations of operad maps. arXiv:0208041

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of MathematicsTrinity CollegeDublinIreland
  2. 2.Mathematics Research UnitUniversity of LuxembourgLuxembourgGrand Duchy of Luxembourg

Personalised recommendations