Applied Categorical Structures

, Volume 24, Issue 4, pp 373–384 | Cite as

On Certain 2-Categories Admitting Localisation by Bicategories of Fractions

Article

Abstract

Pronk’s theorem on bicategories of fractions is applied, in almost all cases in the literature, to 2-categories of geometrically presentable stacks on a 1-site. We give an proof that subsumes all previous such results and which is purely 2-categorical in nature, ignoring the nature of the objects involved. The proof holds for 2-categories that are not (2,1)-categories, and we give conditions for local essential smallness. This is the published version of arXiv:1402.7108.

Keywords

2-categories Bicategories of fractions Localization Stacks 

Mathematics Subject Classification (2010)

Primary 18D05 Secondary 18F10 18E35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbad, O., Vitale, E.: Faithful calculus of fractions. Cahiers de Topologie et Géométrie Différentielle Catégoriques 54, 221–239 (2013)MathSciNetMATHGoogle Scholar
  2. 2.
    Bartels, T.: Higher gauge theory I: 2-Bundles. Ph.D. thesis, University of California Riverside (2006). arXiv:math.CT/0410328
  3. 3.
    van den Berg, B., Moerdijk, I.: The axiom of multiple choice and models for constructive set theory. J. Math. Log. 14(1) (2014). arXiv:1204.4045
  4. 4.
    Bunge, M., Paré, R.: Stacks and equivalence of indexed categories. Cahiers Topologie Géom Différentielle 20(4), 373–399 (1979)MathSciNetMATHGoogle Scholar
  5. 5.
    Karagila, A.: Embedding orders into cardinals with D C κ. Fundamenta Mathematicae 226, 143–156 (2014). arXiv:1212.4396 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Leinster, T.: Basic bicategories (1998). arXiv:math.CT/9810017
  7. 7.
    Makkai, M.: Avoiding the axiom of choice in general category theory. J. Pure Appl. Algebra 108, 109–173 (1996)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pronk, D.: Etendues and stacks as bicategories of fractions. Compos. Math. 102(3), 243–303 (1996)MathSciNetMATHGoogle Scholar
  9. 9.
    Pronk, D., Warren, M.: Bicategorical fibration structures and stacks. Theory and Applications of Categories 29(29), 836–873 (2014)MathSciNetMATHGoogle Scholar
  10. 10.
    Roberts, D.M.: Internal categories, anafunctors and localisation. Theory Appl. Categ. 26(29), 788–829 (2012). arXiv:1101.2363 MathSciNetMATHGoogle Scholar
  11. 11.
    Roberts, D.M.: The weak choice principle WISC may fail in the category of sets. Studia Logica (2015). doi:10.1007/s11,225-015-9603-6. arXiv:1311.3074
  12. 12.
    Shulman, M.: Exact completions and small sheaves. Theory Appl. Categ. 27, 97–173 (2012)MathSciNetMATHGoogle Scholar
  13. 13.
    Street, R.: Two-dimensional sheaf theory. J. Pure Appl. Algebra 23(3), 251–270 (1982). doi:10.1016/0022-4049(82)90101-3 MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu (2015)
  15. 15.
    Tommasini, M.: Some insights on bicategories of fractions - I (2014). arXiv:1410.3990
  16. 16.
    Vistoli, A.: Grothendieck topologies, fibred categories and descent theory. In: Fundamental algebraic geometry. Math. Surveys. Monogr. 123, 1–104. Amer. Math. Soc., Providence, RI (2005). arXiv:math/0412512. Available from, http://www.homepage.sns.it/vistoli/descent.pdf

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations