Applied Categorical Structures

, Volume 23, Issue 6, pp 753–776 | Cite as

Normalizers and Split Extensions

Article

Abstract

We make explicit a larger structural phenomenon hidden behind the existence of normalizers in terms of existence of certain precartesian maps related to the kernel functor.

Keywords

Categorical algebra Algebraic theory Normalizer Split extension Fibration of points Protomodular category Mal’tsev category Unital category Topological algebra 

Mathematics Subject Classifications (2010)

18A05 18B99 08C05 08A30 08A99 22A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barr, M.: Exact categories. Springer L. N. Math. 236, 1–120 (1971)Google Scholar
  2. 2.
    Borceux, F., Clementino, M.M.: Topological semi-abelian algebras. Adv. Math. 190, 425–453 (2005)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)MATHMathSciNetGoogle Scholar
  4. 4.
    Bourn, D.: Normalization Equivalence, Kernel Equivalence and Affine Categories. Springer L. N. Math. 1488, 43–62 (1991)MathSciNetGoogle Scholar
  5. 5.
    Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4, 43–62 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourn, D.: Normal subobjects and abelian objects in protomodular categories. J. Algebra 228, 143–164 (2000)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bourn, D.: Normal subobjects of topological groups and of topological semi-Abelian algebras. Topol. Appl. 153, 1341–1364 (2006)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bourn, D.: Two ways to centralizers of equivalence relations. Applied Categorical Structures, accepted and online (2013). doi:10.1007/s10485-013-9347-2
  9. 9.
    Bourn, D., Borceux, F.: Mal’cev, protomodular, homological and semi-abelian categories Kluwer. Math. Appl. 566, 479 (2004)MathSciNetGoogle Scholar
  10. 10.
    Bourn, D., Gran, M.: Centrality and normality in protomodular categories. Theory Appl. Categ. 9, 151–165 (2002)MathSciNetGoogle Scholar
  11. 11.
    Bourn, D., Gray, J.R.A.: Aspects of algebraic exponentiation. Bull. Belg. Math. Soc. Simon Stevin 19, 823–846 (2012)MathSciNetGoogle Scholar
  12. 12.
    Bourn, D., Janelidze, G.: Centralizers in action accessible categories. Cahiers de Top. et Géom. Diff. Catégoriques 50, 211–232 (2009)MATHMathSciNetGoogle Scholar
  13. 13.
    Bourn, D., Janelidze, Z.: Categorical (binary) difference terms and protomodularity Algebra Universalis. Algebra Univers. 66, 277–316 (2011)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Carboni, A., Kelly, G.M.: Some remarks on maltsev and goursat categories. Appl. Categ. Struct. 1, 365–421 (1993)MathSciNetGoogle Scholar
  15. 15.
    Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69, 271–284 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. CMS Conf. Proc. 13, 97–109 (1992)MathSciNetGoogle Scholar
  17. 17.
    Cigoli, A., Mantovani, S.: Action accessibility and centralizers. J. Pure Appl. Algebra 216, 1852–1865 (2012)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gray, J.R.A.: Algebraic exponentiation and internal homology in general categories. PhD thesis, University of Cape To (2010)Google Scholar
  19. 19.
    Gray, J.R.A.: Algebraic exponentiation in general categories. Appl. Categ. Struct. 20, 543–567 (2012)MATHCrossRefGoogle Scholar
  20. 20.
    Gray, J.R.A.: Normalizers, centralizers and action representability in semi-abelian categories. Applied Categorical Structures, accepted and online (2014). doi:10.1007/s10485-014-9379-2
  21. 21.
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford University Press, Oxford (2002)Google Scholar
  22. 22.
    Lang, S.: Algebra. Addison-Wesley Publishing Company (1965)Google Scholar
  23. 23.
    Pedicchio, M.C.: A categorical approach to commutator theory. J. Algebra 177, 143–147 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Pures et AppliquéesUniversité du LittoralCalais CedexFrance
  2. 2.University of South AfricaPretoriaSouth Africa

Personalised recommendations