On the Category of Props
Article
First Online:
Received:
Accepted:
- 155 Downloads
- 4 Citations
Abstract
The category of (colored) props is an enhancement of the category of colored operads, and thus of the category of small categories. The titular category has nice formal properties: it is bicomplete and is a symmetric monoidal category, with monoidal product closely related to the Boardman-Vogt tensor product of operads. Tools developed in this article, which is the first part of a larger work, include a generalized version of multilinearity of functors, a free prop construction defined on certain “generalized” graphs, and the relationship between the category of props and the categories of permutative categories and of operads.
Keywords
Colored operad Colored prop Multicategory Permutative categoryPreview
Unable to display preview. Download preview PDF.
References
- 1.Barr, M., Wells, C.: Toposes, triples and theories. Repr. Theory Appl. Categ. 12, x+288 (2005). Corrected reprint of the 1985 original [MR0771116]. MR 2178101MathSciNetGoogle Scholar
- 2.Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras, categories in algebra, geometry and mathematical physics. Contemp. Math. Amer. Math. Soc. Providence RI 431, 31–58 (2007). MR 2342815 (2008k:18008)MathSciNetGoogle Scholar
- 3.Boardman, J.M., Vogt, R.M.: Homotopy Invariant Algebraic Structures on Topological Spaces. Lecture Notes in Mathematics, vol. 347. Springer-Verlag, Berlin (1973). MR 0420609 (54 #8623a)Google Scholar
- 4.Cisinski, D.-C., Moerdijk, I.: Dendroidal sets as models for homotopy operads. J. Topol. 4(2), 257–299 (2011). MR 2805991. doi: 10.1112/jtopol/jtq039 MathSciNetCrossRefMATHGoogle Scholar
- 5.Cisinski, D.-C., Moerdijk, I.: Dendroidal Segal spaces and ∞-operads. J. Topol. 6(3), 675–704 (2013). doi: 10.1112/jtopol/jtt004 MathSciNetCrossRefMATHGoogle Scholar
- 6.Cisinski, D.-C., Moerdijk, I.: Dendroidal sets and simplicial operads. J. Topol. 6(3), 705–756 (2013). doi: 10.1112/jtopol/jtt006 MathSciNetCrossRefMATHGoogle Scholar
- 7.Hess, K., Voronov, A., Cohen, R.L.: String Topology and Cyclic Homology. Adv. Courses in Math CRM Barcelona. Birkhäuser, Basel (2006). Translated from the Japanese by M. ReidGoogle Scholar
- 8.Elmendorf, A.D., Mandell, M.A.: Rings, modules, and algebras in infinite loop space theory. Adv. Math. 205(1), 163–228 (2006). MR 2254311 (2007g:19001)MathSciNetCrossRefMATHGoogle Scholar
- 9.Elmendorf, A.D., Mandell, M.A.: Permutative categories, multicategories and algebraic K-theory. Algebr. Geom. Topol. 9(4), 2391–2441 (2009). MR 2558315 (2011a:19002)MathSciNetCrossRefMATHGoogle Scholar
- 10.Frégier, Y., Markl, M., Yau, D.: The \(L_\infty \)-deformation complex of diagrams of algebras, New York. J. Math. 15, 353–392 (2009). MR 2530153 (2011b:16039)MATHGoogle Scholar
- 11.Fresse, B.: Props in model categories and homotopy invariance of structures. GeorgianMath. J. 17(1), 79–160 (2010). MR 2640648 (2011h:18011)MathSciNetMATHGoogle Scholar
- 12.Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discret. Appl. Math. 42(2–3), 177–201 (1993). Combinatorial structures and algorithms. MR 1217096 (94e:05187)MathSciNetCrossRefMATHGoogle Scholar
- 13.Ginzburg, V., Kapranov, M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994). MR 1301191 (96a:18004)MathSciNetCrossRefMATHGoogle Scholar
- 14.Hackney, P., Robertson, M.: The homotopy theory of propsGoogle Scholar
- 15.Johnson, M.W., Yau, D.: On homotopy invariance for algebras over colored PROPs. J. Homotopy Relat. Struct. 4(1), 275–315 (2009). MR 2559644 (2010j:18014)MathSciNetMATHGoogle Scholar
- 16.Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004). MR 2094071 (2005h:18030)CrossRefGoogle Scholar
- 17.Mac Lane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965). MR 0171826 (30 #2053)MathSciNetCrossRefGoogle Scholar
- 18.Mac Lane, S.: Categories for the working mathematician, 2nd edn.Graduate Texts in Mathematics, vol. 5. Springer-Verlag, New York (1998). MR 1712872 (2001j:18001)Google Scholar
- 19.Markl, M.: Operads and PROPs. Handbook of Algebra, vol. 5, pp. 87–140. Elsevier, North-Holland, Amsterdam (2008). MR 2523450 (2010j:18015)Google Scholar
- 20.Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002). MR 1898414 (2003f:18011)Google Scholar
- 21.Peter May, J.: May, The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol, 271. Springer-Verlag, Berlin (1972). MR 0420610 (54 #8623b)Google Scholar
- 22.Moerdijk, I.: Lectures on dendroidal sets. Simplicial methods for operads and algebraic geometry. Adv. Courses Math, pp. 1–118. CRM Barcelona, Birkhauser/Springer Basel AG, Basel (2010). Notes written by Javier J. Gutierrez. MR 2778589Google Scholar
- 23.Moerdijk, I., Weiss, I.: Dendroidal sets. Algebr. Geom. Topol. 7, 1441–1470 (2007). MR 2366165 (2009d:55014). doi: 10.2140/agt.2007.7.1441 MathSciNetCrossRefMATHGoogle Scholar
- 24.Moerdijk, I., Weiss, I.: On inner Kan complexes in the category of dendroidal sets. Adv. Math. 221(2), 343–389 (2009). MR 2508925 (2010a:55021). doi: 10.1016/j.aim.2008.12.015 MathSciNetCrossRefMATHGoogle Scholar
- 25.Pirashvili, T.: On the PROP corresponding to bialgebras. Cah. Topol. Géom. Différ. Catég. 43(3), 221–239 (2002). MR 1928233 (2003i:18012)MathSciNetMATHGoogle Scholar
- 26.Segal, G.B.: The definition of conformal field theory. Differential geometrical methods in theoretical physics (Como, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Kluwer Acad. Publ. Dordrecht 250, 165–171 (1988). MR 981378 (90d:58026)Google Scholar
- 27.Torres, A.F., Aráoz, J.D.: Combinatorial models for searching in knowledge bases. Acta Cient. Venezolana 39(5–6), 387–394 (1988). MR 1005374 (90k:68162)MathSciNetMATHGoogle Scholar
Copyright information
© Springer Science+Business Media Dordrecht 2014