Applied Categorical Structures

, Volume 22, Issue 5–6, pp 833–856 | Cite as

Two Ways to Centralizers of Equivalence Relations

Article

Abstract

We investigate what is the common part of the action accessible and the fibrewise algebraically cartesian closed (facc) categories dealing with the existence of centralizers of equivalence relations. Doing this, we shall introduce some new aspects of the Beck-Chevalley commutation with respect to the fibration of points \(\P _{\mathbb C}\) and shall characterize the existence of those centralizers by a specific property of this same fibration.

Keywords

Fibration of points Beck-Chevalley commutation Centralizer Unital, Mal’cev and protomodular categories Action accessible and fiberwise algebraically cartesian closed categories 

Mathematics Subject Classification (2010)

18A40 18C15 18D15 20A05 13A99 17B99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barr, M.: Exact categories. Springer L.N. Math. 236, 1–120 (1971)Google Scholar
  2. 2.
    Borceux, F., Bourn, D.: Mal’cev, protomodular, homological and semi-abelian categories. In: Mathematics and its Applications, vol. 566. Kluwer (2004)Google Scholar
  3. 3.
    Borceux, F., Janelidze, G., Kelly, G.M.: Internal object actions. Comment. Math. Univ. Carol. 46, 235–255 (2005)MATHMathSciNetGoogle Scholar
  4. 4.
    Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)MATHMathSciNetGoogle Scholar
  5. 5.
    Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. Springer L.N. 1488, 43–62 (1991)MathSciNetGoogle Scholar
  6. 6.
    Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4, 307–327 (1996)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bourn, D.: Intrinsic centrality and associated classifying properties. J. Algebra 256, 126–145 (2002)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bourn, D.: Centralizer and faithful groupoid. J. Algebra 328, 43–76 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bourn, D., Gran, M.: Centrality and connectors in Maltsev categories. Algebra Univers. 48, 309–331 (2002)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Bourn, D., Gray, J.RA.: Aspects of algebraic exponentiation. Bull. Belg. Math. Soc. Simon Stevin 19, 823–846 (2012)MathSciNetGoogle Scholar
  11. 11.
    Bourn, D., Janelidze, G.: Centralizers in action accessible categories. Cahiers de Top. et Géom Diff. Catég. 50, 211–232 (2009)MATHMathSciNetGoogle Scholar
  12. 12.
    Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69, 271–284 (1991)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. CMS Conf. Proc. 13, 97–109 (1992)MathSciNetGoogle Scholar
  14. 14.
    Gray, J.RA.: Algebraic exponentiation in general categories. Appl. Categ. Struct. 20, 543–567 (2012)CrossRefMATHGoogle Scholar
  15. 15.
    Gray, J.RA.: Algebraic exponentiation for categories of Lie algebras. J. Pure Appl. Algebra 216, 1964–1967 (2012)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Huq, S.A.: Commutator, nilpotency and solvability in categories. Q. J. Oxford 19, 363–389 (1968)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Johnstone, P.T.: Topos Theory, p 367. Academic Press, New York (1977)MATHGoogle Scholar
  18. 18.
    Pedicchio, M.C.: A categorical approach to commutator theory. J. Algebra 177, 647–657 (1995)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Pures et AppliquéesUniversité du LittoralCalais CedexFrance

Personalised recommendations