Applied Categorical Structures

, Volume 23, Issue 3, pp 447–486 | Cite as

Fibred Amalgamation, Descent Data, and Van Kampen Squares in Topoi

  • Uwe Wolter
  • Harald König


Reliable semantics for software systems has to follow the semantics-as-instance principal (fibred semantics) rather than the semantics-as-interpretation principal (indexed semantics). While amalgamation of interpretations is simple and nearly always possible, amalgamation of instances is very much involved and not possible in many cases. A condition when two compatible instances (a span of pullbacks) are amalgamable, is presented for presheaves, i.e. functor categories SET 𝒮 . Based on this individual condition we prove further a total condition for amalgamation which simultaneously yields a necessary and sufficient condition for pushouts to be Van Kampen squares. As a necessary and adequate basis to achieve these results we provide a full revision and adaption of the theory of descent data in topoi for applications in diagrammatic specifications including graph transformations. Especially, we characterize Van Kampen squares in arbitrary topoi by pullbacks of categories of descent data.


Van Kampen square Amalgamation Descent data Fibred semantics Diagrammatic specification Graph transformation 

Mathematics Subject Classifications (2010)

03G30 18B25 18D30 18F20 68Q55 68Q65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall International Series (1990)Google Scholar
  2. 2.
    Barr, M., Wells, C.: Toposes, triples and theories. Repr Theory Appl Categories 12, 1–287 (2005). CrossRefMathSciNetGoogle Scholar
  3. 3.
    Claßen, I., Große-Rhode, M., Wolter, U.: Categorical concepts for parameterized partial specifications. Math. Struct. Comput. Sci. 5(2), 153–188 (1995). doi: 10.1017/S0960129500000700 CrossRefzbMATHGoogle Scholar
  4. 4.
    Diskin, Z.: Databases as diagram algebras: specifying queries and views via the graph-based logic of sketches. Tech. Rep. 9602, Frame Inform Systems/LDBD, Riga. (1996)
  5. 5.
    Diskin, Z.: Towards algebraic graph-based model theory for computer science. Bull. Symb. Log. 3, 144–145 (1997). Presented (by title) at Logic Colloquium’95Google Scholar
  6. 6.
    Diskin, Z., Kadish, B.: A graphical yet formalized framework for specifying view systems. In: Advances in Databases and Information Systems, vol. 2(5) pp. 123–132. ACM SIGMOD Digital Anthology: ADBIS’97 (1997)Google Scholar
  7. 7.
    Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling. ENTCS 203/6, 19–41 (2008). doi: 10.1016/j.entcs.2008.10.041 Google Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformations. Springer, Berlin (2006)Google Scholar
  9. 9.
    Ehrig, H., Grosse-Rhode, M., Wolter, U.: Applications of category theory to the area of algebraic specification in computer science. Appl. Categ. Struct. 6, 1–35 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. Springer, Berlin, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifications and Constraints, EATCS Monographs on Theoretical Computer Science, vol. 2. Springer, Berlin, Heidelberg, New York (1990)CrossRefGoogle Scholar
  12. 12.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph transformation. Lect. Notes Comput. Sci. 3256, 161–177 (2004). doi: 10.1007/978-3-540-30203-2_13 MathSciNetGoogle Scholar
  13. 13.
    Freyd, P.: Aspects of topoi. Bull. Aust. Math. Soc. 7, 1–76 (1972). doi: 10.1017/S0004972700044828 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover, New York (1984)zbMATHGoogle Scholar
  15. 15.
    Grothendieck, A.: Techniques de descente et théoremes d’existence en géometrie algébraique, I. Géneralités. Séminaire Bourbaki 190 (1959)Google Scholar
  16. 16.
    Grothendieck, A.: Catégories fibrées et descente, exposé vi, in: Revêtements étales et groupe fondamental (SGA1). Lect Notes Math. 224, 145–194 (1971)MathSciNetGoogle Scholar
  17. 17.
    Heindel, T., Sobocinski, P.: Van Kampen colimits as bicolimits in span. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) Algebra and Coalgebra in Computer Science, Lecture Notes in Computer Science, vol. 5728, pp. 335–349. Springer, Berlin. doi: 10.1007/978-3-642-03741-2_23 (2009)
  18. 18.
    Janelidze, G., Tholen, W.: Facets of descent, i. Appl. Categ. Struct. 2, 245–281 (1994). doi:10.1007/BF00878100CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Johnstone, P.: Sketches of an Elephant—A Topos Theory Compendium, vol. 1. Oxford Science, Oxford (2002)Google Scholar
  20. 20.
    König, H., Wolter, U., Löwe, M.: Characterizing Van Kampen squares via descent data. In: Golas, U., Soboll, T. (eds.) Proceedings of ACCAT 2012, pp. 61–81. EPTCS. doi: 10.4204/EPTCS.93.4 (2012)
  21. 21.
    Lack, S., Sobociński, P.: Toposes are adhesive. Lect. Notes Comput. Sci. 4178, 184–198 (2006). doi: 10.1007/11841883_14 Google Scholar
  22. 22.
    Lawvere, F.: An elementary theory of the category of sets. In: Proceeding of the National Academy of Sciences of the U.S.A., vol. 51, pp. 15061510 (1964)Google Scholar
  23. 23.
    Löwe, M.: Van-Kampen pushouts for sets and graphs. Tech. rep., University of Applied Sciences, FHDW Hannover (2010)Google Scholar
  24. 24.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)zbMATHGoogle Scholar
  25. 25.
    Makkai, M.: Generalized sketches as a framework for completeness theorems. J. Pure Appl. Algebra 115, 49–79, 179–212, 214–274 (1997)Google Scholar
  26. 26.
    McLarty, C.: Elementary Categories, Elementary Toposes. Clarendon Press (1995)Google Scholar
  27. 27.
    Pedicchio, M., Tholen, W.: Categorical Foundations: Topics in Order, Topology, Algebra, and Sheaf Theory. Cambridge University Press, Cambridge (2004)Google Scholar
  28. 28.
    Reichel, H.: Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University Press, Oxford (1987)zbMATHGoogle Scholar
  29. 29.
    Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-merge approach to version control in MDE. J. Logic Algebraic Program. 79(7), 636–658 (2010). doi: 10.1016/j.jlap.2009.10.003 CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification and transformation of constraints in MDE. J. Logic Algebraic Program. 81/4, 422–457 (2012). doi: 10.1016/j.jlap.2012.03.006 CrossRefMathSciNetGoogle Scholar
  31. 31.
    Soboczińsky, P.: Deriving process congruences from reaction rules. Tech. Rep. DS-04-6, BRICS Dissertation Series (2004)Google Scholar
  32. 32.
    Wolter, U.: An algebraic approach to deduction in equational partial Horn theories. J. Inf. Process. Cybern. EIK 27(2), 85–128 (1990)Google Scholar
  33. 33.
    Wolter, U., Diskin, Z.: From indexed to fibred semantics-the generalized sketch file-. Reports in Informatics 361, Department of Informatics, University of Bergen (2007)Google Scholar
  34. 34.
    Wolter, U., König, H.: Fibred amalgamation, descent data, and Van Kampen squares in topoi. Tech. Rep. Report No 404, Department of Informatics, University of Bergen (2012).

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.University of Applied Sciences, FHDW HannoverHannoverGermany

Personalised recommendations