Applied Categorical Structures

, Volume 22, Issue 1, pp 229–240 | Cite as

Solvability of a Class of Braided Fusion Categories

Article

Abstract

We show that a weakly integral braided fusion category \({{\mathcal C}}\) such that every simple object of \({{\mathcal C}}\) has Frobenius-Perron dimension ≤ 2 is solvable. In addition, we prove that such a fusion category is group-theoretical in the extreme case where the universal grading group of \({{\mathcal C}}\) is trivial.

Keywords

Fusion category Braided fusion category Solvability 

Mathematics Subject Classifications (2010)

18D10 16T05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bichon, J., Natale, S.: Hopf algebra deformations of binary polyhedral groups. Transf. Groups 16, 339–374 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bruguières, A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann. 316, 215–236 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. 2011(24), 5644–5705 (2011)MATHGoogle Scholar
  4. 4.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. Preprint, arXiv:0704.0195 (2007). Accessed 2 Apr 2007
  5. 5.
    Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. Sel. Math. New Ser. 16, 1–119 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Etingof, P., Gelaki, S., Ostrik, V.: Classification of fusion categories of dimension pq. Int. Math. Res. Not. 2004(57), 3041–3056 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2005)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226, 176–205 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Etingof, P., Rowell, E., Witherspoon, S.: Braid group representations from quantum doubles of finite groups. Pac. J. Math. 234, 33–42 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gelaki, S., Naidu, D., Nikshych, D.: Centers of graded fusion categories. Algebra Number Theory 3, 959–990 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gelaki, S., Nikshych, D.: Nilpotent fusion categories. Adv. Math. 217, 1053–1071 (2008)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Isaacs, I.: Character Theory of Finite Groups. Pure and Applied Mathematics, vol. 69. Academic Press, New York (1976)Google Scholar
  13. 13.
    Liptrap, J.: Generalized Tambara-Yamagami categories. J. Algebra (2010, to appear). Preprint, arXiv:1002.3166v2. Accessed 6 Mar 2010
  14. 14.
    Masuoka, A.: Cocycle deformations and Galois objects for some cosemisimple Hopf algebras of finite dimension. Contemp. Math. 267, 195–214 (2000)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Müger, M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150, 151–201 (2000)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Müger, M.: On the structure of modular categories. Proc. Lond. Math. Soc. 3(87), 291–308 (2003)CrossRefGoogle Scholar
  17. 17.
    Naidu, D., Nikshych, D., Witherspoon, S.: Fusion subcategories of representation categories of twisted quantum doubles of finite groups. Int. Math. Res. Not. 2009(22), 4183–4219 (2009)MATHMathSciNetGoogle Scholar
  18. 18.
    Naidu, D., Rowell, E.: A finiteness property for braided fusion categories. Algebr. Represent. Theory 14, 837–855 (2011)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Natale, S.: On group-theoretical Hopf algebras and exact factorizations of finite groups. J. Algebra 270, 199–211 (2003)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Natale, S., Plavnik, J.: On fusion categories with few irreducibles degrees. Preprint, arXiv:1103.2340v2, Algebra Number Theory 6, 1171–1197 (2012). Accessed 4 Nov 2011
  21. 21.
    Nikshych, D.: Non group-theoretical semisimple Hopf algebras from group actions on fusion categories. Sel. Math. 14, 145–161 (2008)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Siehler, J.: Braided near-group categories. Preprint, arXiv:math/0011037v1 (2012). Accessed 6 Nov 2000
  23. 23.
    Tambara, D.: Invariants and semi-direct products for finite group actions on tensor categories. J. Math. Soc. Jpn. 53, 429–456 (2001)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209, 692–707 (1998)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Thornton, J.: On braided near-group categories. Preprint, arXiv:1102.4640v1 (2012). Accessed 22 Feb 2011

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Facultad de Matemática, Astronomía y FísicaUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations