Advertisement

Applied Categorical Structures

, Volume 21, Issue 4, pp 393–415 | Cite as

Concordant and Monotone Morphisms

  • João J. XarezEmail author
Article

Abstract

Concordant-dissonant and monotone-light factorisation systems on categories, ways to construct them, and conditions for them to coincide, as well as their examples are studied in this article. These factorisation systems are constructed from a reflection induced from a ground adjunction and a specified prefactorisation system. Furthermore, we give additional conditions, under which the monotone-light and the concordant-dissonant factorisations coincide for sub-reflections of the induced reflection. The adjunctions given by right Kan extensions, from the category of presheaves on sets, turn out to be very well-behaved examples, provided they satisfy the cogenerating set condition, which allows to describe the four classes of morphisms in the reflective and concordant-dissonant (= monotone-light) factorisations. It is also noticed that the faithfulness of the composite of the left-adjoint with the Yoneda embedding can be seen as a generalisation of the cogenerating set condition. Using this generalisation it is possible to present a convenient simplified version of the sufficient conditions above for the case of an adjunction from the category of presheaves on sets into a cocomplete category, satisfying the faithfulness of the abovementioned composite. Then, the same is done for induced sub-reflections from categories of models of (limit) sketches; in particular this explains why the monotone-light factorisation for categories via preordered sets is just the restriction of the same factorisation for simplicial sets via ordered simplicial complexes.

Keywords

Kan extensions Cogenerating set Epireflection Stable units Prefactorisation  Concordant-dissonant factorisation Monotone-light factorisation Dense subcategory Regular category Presheaves Models of sketches Descent theory Galois theory Simplicial set 

Mathematics Subject Classifications (2010)

18A40 18A32 12F10 18G30 55U10 18F20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carboni, A., Janelidze, G., Kelly, G.M., Paré, R.: On localization and stabilization for factorization systems. Appl. Categ. Struct. 5, 1–58 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cassidy, C., Hébert, M., Kelly, G.M.: Reflective subcategories, localizations and factorization systems. J. Aust. Math. Soc. 38A, 287–329 (1985)CrossRefGoogle Scholar
  3. 3.
    Eilenberg, S.: Sur les transformations continues d’espaces métriques compacts. Fundam. Math. 22, 292–296 (1934)Google Scholar
  4. 4.
    Freyd, P.J., Kelly, G.M.: Categories of continous functors, I. J. Pure Appl. Algebra 2, 169–191 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Janelidze, G., Sobral, M., Tholen, W.: Beyond barr exactness: effective descent morphisms. In: Categorical Foundations. Special Topics in Order, Topology, Algebra and Sheaf Theory. Cambridge University Press (2004)Google Scholar
  6. 6.
    Janelidze, G., Tholen, W.: Functorial factorization, well-pointedness and separability. J. Pure Appl. Algebra 142, 99–130 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer (1998)Google Scholar
  8. 8.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Springer (1992)Google Scholar
  9. 9.
    Whyburn, G.T.: Non-alternating transformations. Am. J. Math. 56, 294–302 (1934)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Xarez, J.J.: The monotone-light factorization for categories via preorders. In: Galois Theory, Hopf Algebras and Semiabelian Categories, pp. 533–541, Fields Inst. Commun., vol. 43. Amer. Math. Soc., Providence (2004)Google Scholar
  11. 11.
    Xarez, J.J.: A Galois theory with stable units for simplicial sets. Theory Appl. Categ. 15, 178–193 (2006)MathSciNetGoogle Scholar
  12. 12.
    Xarez, J.J.: Well-behaved epireflections for Kan extensions. Appl. Categ. Struct. 18, 219–230 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de AveiroAveiroPortugal

Personalised recommendations