Applied Categorical Structures

, Volume 21, Issue 4, pp 349–377 | Cite as

Enriched Logical Connections



In the setting of enriched category theory, we describe dual adjunctions of the form \(L\dashv R:{\mathsf{Spa}}^{op} \longrightarrow{\mathsf{Alg}}\) between the dual of the category Spa of “spaces” and the category Alg of “algebras” that arise from a schizophrenic object Ω, which is both an “algebra” and a “space”. We call such adjunctions logical connections. We prove that the exact nature of Ω is that of a module that allows to lift optimally the structure of a “space” and an “algebra” to certain diagrams. Our approach allows to give a unified framework known from logical connections over the category of sets and analyzed, e.g., by Hans Porst and Walter Tholen, with future applications of logical connections in coalgebraic logic and elsewhere, where typically, both the category of “spaces” and the category of “algebras” consist of “structured presheaves”.


Logical connection Schizophrenic object Module 

Mathematics Subject Classifications (2010)

18D20 18A22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible categories, J. Pure Appl. Algebra 175, 7–30 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990). Available electronically as a TAC Reprint at
  3. 3.
    Anghel, C.: Semi-initial and semi-final Open image in new window-functors. Commun. Algebra 18(1), 135–181 (1990)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Anghel, C.: Lifting properties of Open image in new window-functors. Commun. Algebra 18(1), 183–192 (1990)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, 2nd edn. Graduate Texts in Mathematics, Springer, New York (1992)Google Scholar
  7. 7.
    Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A primer on Galois connections. Ann. New York Acad. Sci. 704, 103–125 (1993)CrossRefGoogle Scholar
  8. 8.
    Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. In: Lecture Notes in Mathematics 221. Springer, New York (1971)Google Scholar
  9. 9.
    Isbell, J.: Adequate subcategories. Ill. J. Math. 4(4), 541–552 (1960)MathSciNetMATHGoogle Scholar
  10. 10.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  11. 11.
    Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of coalgebraic logic over posets. Short contributions CALCO 2010Google Scholar
  12. 12.
    Kasch, F.: Moduln und Ringe. B.G. Teubner, Stuttgart (1977)MATHCrossRefGoogle Scholar
  13. 13.
    Kelly, G.M.: Basic concepts of enriched category theory. In: London Math. Soc. Lecture Notes Series 64. Cambridge University Press, Cambridge (1982). Also available as TAC reprint via
  14. 14.
    Kelly, G.M., Schmitt, V.: Notes on enriched categories with colimits of some class. Theory Appl. Categ. 14(17), 399–423 (2005)MathSciNetMATHGoogle Scholar
  15. 15.
    Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. Manuscript, available at
  16. 16.
    Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rend. Semin. Mat. Fis. Milano XLIII, 135–166 (1973). Also available as TAC reprint via MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pavlović, D., Mislove, M., Worrell, J.: Testing semantics: connecting processes and process logics. In: Proceedings of AMAST 2006, Lecture Notes in Computer Science, vol. 4019. Springer, New York (2006)Google Scholar
  18. 18.
    Porst, H.-E., Tholen, W.: Concrete dualities. In: Herrlich, H., Porst, H.-E. (eds.) Category Theory at Work, pp. 111–136. Heldermann, Berlin (1991)Google Scholar
  19. 19.
    Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LeicesterLeicesterUK
  2. 2.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations