Applied Categorical Structures

, Volume 20, Issue 3, pp 209–228 | Cite as

Deep Inference and Probabilistic Coherence Spaces

  • Richard Blute
  • Prakash Panangaden
  • Sergey Slavnov


This paper proposes a definition of categorical model of the deep inference system BV, defined by Guglielmi. Deep inference introduces the idea of performing a deduction in the interior of a formula, at any depth. Traditional sequent calculus rules only see the roots of formulae. However in these new systems, one can rewrite at any position in the formula tree. Deep inference in particular allows the syntactic description of logics for which there is no sequent calculus. One such system is BV, which extends linear logic to include a noncommutative self-dual connective. This is the logic our paper proposes to model. Our definition is based on the notion of a linear functor, due to Cockett and Seely. A BV-category is a linearly distributive category, possibly with negation, with an additional tensor product which, when viewed as a bivariant functor, is linear with a degeneracy condition. We show that this simple definition implies all of the key isomorphisms of the theory. We consider Girard’s category of probabilistic coherence spaces and show that it contains a self-dual monoidal structure in addition to the *-autonomous structure exhibited by Girard. This structure makes the category a BV-category. We believe this structure is also of independent interest, as well-behaved noncommutative operators generally are.


Categorical logic Deep inference systems Linear logic Probabilistic coherence spaces 

Mathematics Subject Classifications (2010)

03B47 03G30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored *-categories. J. Pure Appl. Algebra 143, 3–47 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barr, M.: *-autonomous Categories. Springer Lecture Notes in Mathematics 752 (1980)Google Scholar
  3. 3.
    Blute, R., Cockett, J.R.B., Seely, R.A.G., Trimble, T.: Natural deduction and coherence for weakly distributive categories. J. Pure Appl. Algebra 13, 229–296 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blute, R., Ivanov, I., Panangaden, P.: Discrete quantum causal dynamics. Int. J. Theor. Phys. 42, 2025–2041 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brünner, K.: Deep inference and symmetry in classical proofs. Ph.D. thesis, Dresden Technical University (2003)Google Scholar
  6. 6.
    Cockett, J.R.B., Seely, R.A.G.: Weakly distributive categories. J. Pure Appl. Algebra 114, 133–173 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cockett, J.R.B., Seely, R.A.G.: Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. Theory Appl. Categ. 5, 85–131 (1997)MathSciNetGoogle Scholar
  8. 8.
    Cockett, J.R.B., Seely, R.A.G.: Linearly distributive functors. J. Pure Appl. Algebra 143, 155–203 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Danos, V., Ehrhard, T.: On Probabilistic Coherence Spaces (2008, preprint)Google Scholar
  10. 10.
    Danos, V., Harmer, R.: Probabilistic Games Semantics. In: Proceedings of Logic in Computer Science (2000)Google Scholar
  11. 11.
    Ehrhard, T.: Finiteness spaces. Math. Struct. Comput. Sci. 15, 615–646 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ehrhard, T.: On Köthe sequence spaces and linear logic. Math. Struct. Comput. Sci. 12, 579–623 (2001)MathSciNetGoogle Scholar
  13. 13.
    Führmann, C., Pym, D.: On categorical models of classical logic and the geometry of interaction. Math. Struct. Comput. Sci. 17, 957–1027 (2007)zbMATHCrossRefGoogle Scholar
  14. 14.
    Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Girard, J.Y.: Between logic and quantic: a tract. In: Ehrhard, T., et al. (eds.) Linear Logic in Computer Science. Cambridge University Press (2003)Google Scholar
  16. 16.
    Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput. Log. 8(1:1), 1–64 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hughes, D.: Deep inference proof theory equals categorical proof theory minus coherence (2004, preprint)Google Scholar
  18. 18.
    Hyland, M., Schalk, A.: Glueing and orthogonality for models of linear logic. Theor. Comp. Sci. 294, 183–231 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lamarche, F.: Exploring the gap between linear and classical logic. Theory Appl. Categ. 18, 473–535 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    McKinley, R.: Classical categories and deep inference (2005, preprint)Google Scholar
  21. 21.
    Melliés, P.-A.: Double categories: a modular model of multiplicative linear logic. Math. Struct. Comput. Sci. 12, 449–479 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Retoré, C.: Pomset logic: a non-commutative extension of classical linear logic. In: Proceedings of TLCA’97. LNCS, vol. 1210, pp. 300–318 (1997)Google Scholar
  23. 23.
    Seely, R.A.G.: Linear logic, *-autonomous categories and cofree coalgebras. Contemporary Mathematics, vol. 92. American Mathematical Society (1989)Google Scholar
  24. 24.
    Strassburger, L.: On the axiomatisation of boolean categories with and without medial. Theory Appl. Categ. 18, 536–601 (2007)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tiu, A.: A system of interaction and structure II: the need for deep inference. Logical Methods in Computer Science 2, 1–24 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Richard Blute
    • 1
  • Prakash Panangaden
    • 2
  • Sergey Slavnov
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  2. 2.Department of Computer ScienceMcGill UniversityMontrealCanada
  3. 3.Moscow State University of Railroad EngineeringMoscowRussia

Personalised recommendations