Advertisement

Applied Categorical Structures

, Volume 20, Issue 3, pp 251–273 | Cite as

Mealy Morphisms of Enriched Categories

  • Robert ParéEmail author
Article

Abstract

We define and study the properties of a notion of morphism of enriched categories, intermediate between strong functor and profunctor. Suggested by bicategorical considerations, it turns out to be a generalization of Mealy machine, well-known since the 1950’s in the theory of computation. When the base category is closed we construct a classifying category for Mealy morphisms, as we call them. This is also seen to give the free tensor completion of an enriched category.

Keywords

Enriched category Strong functor Profunctor Mealy machine 

Mathematics Subject Classifications (2010)

18D10 18D15 18D20 18D25 18B20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bénabou, J.: Introduction to bicategories. Lect. Notes Math. 47, 1–77 (1967)CrossRefGoogle Scholar
  2. 2.
    Betti, R., Carboni, A., Street, R., Walters, R.F.C.: Variation through enrichment. J. Pure Appl. Algebr. 29, 109–127 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Lack, S.: Icons. Appl. Categ. Struct. 18, 289–307 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Rend. Semin. Mat. Fis. Milano XLIII, 135–166 (1973)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lawvere, F.W.: Metric spaces, generalized logic and closed categories. Reprints in Theor. Appl. Categ. 1, 1–37 (2002)MathSciNetGoogle Scholar
  6. 6.
    Linton, F.E.J.: The Multilinear Yoneda Lemmas: Toccata, Fugue and Fantasia on themes by Eilenberg–Kelly and Yoneda. Reports of the midwest category seminar V. Lect. Notes Math. 195, 209–229 (1971)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Marmolejo, F., Rosebrugh, R., Wood, R.J.: Duality for CCD lattices. Theor. Appl. Categ. 22(1), 1–23 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Mealy, G.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34, 1045–1079 (1955)MathSciNetGoogle Scholar
  9. 9.
    Street, R.: Enriched categories and cohomology. Quaest. Math. 6, 265–283 (1983). Reprinted in reprints in Theor. Appl. Categ. 14, 1–18 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Walters, R.F.C.: Sheaves and Cauchy-complete categories. Cahiers Topol. Géom. Différ. 22(3), 283–286 (1981)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Walters, R.F.C.: Sheaves on sites as Cauchy-complete categories. J. Pure Appl. Algebr. 24, 95–102 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Wood, R.J.: Indicial Methods for Relative Categories. Thesis, Dalhousie University (1976)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations