Advertisement

Applied Categorical Structures

, Volume 19, Issue 6, pp 901–938 | Cite as

Left Determined Model Structures for Locally Presentable Categories

  • Marc OlschokEmail author
Article
  • 77 Downloads

Abstract

We extend a result of Cisinski on the construction of cofibrantly generated model structures from (Grothendieck) toposes to locally presentable categories and from monomorphism to more general cofibrations. As in the original case, under additional conditions, the resulting model structures are “left determined” in the sense of Rosický and Tholen.

Keywords

Weak factorization system Quillen model category Homotopy 

Mathematics Subject Classifications (2000)

18C35 18G55  55U35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cah. Topol. Géom. Différ. Catég 43(2), 83–106 (2002)zbMATHGoogle Scholar
  2. 2.
    Adámek, J., Rosický, J.: Locally presentable and accessible categories. In: London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)Google Scholar
  3. 3.
    Beke, T.: Sheafifiable homotopy model categories. Math. Proc. Camb. Philos. Soc. 129(3), 447–475 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cisinski, D.-C.: Théories homotopiques dans les topos. J. Pure Appl. Algebra 174(1), 43–82 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hirschhorn, P.S.: Model categories and their localizations. In: Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)Google Scholar
  6. 6.
    Hovey, M.: Model categories. In: Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)Google Scholar
  7. 7.
    Johnstone, P.T.: Topos theory. In: London Mathematical Society Monographs, vol. 10. Academic Press [Harcourt Brace Jovanovich], London (1977)Google Scholar
  8. 8.
    Joyal, A., Tierney, M.: Strong stacks and classifying spaces. In: Category theory (Como, 1990). Lecture Notes in Math., vol. 1488, pp. 213–236. Springer, Berlin (1991)CrossRefGoogle Scholar
  9. 9.
    Kurz, A., Rosický, J.: Weak factorizations, fractions and homotopies. Appl. Categ. Struct. 13(2), 141–160 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Larson, R.G., Sweedler, M.E.: An associative orthogonal bilinear form for Hopf algebras. Am. J. Math. 91, 75–94 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lárusson, F.: The homotopy theory of equivalence relations. arXiv:math/0611344v1 [math.AT], December (2006)
  12. 12.
    Mac Lane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1998)Google Scholar
  13. 13.
    Matsumura, H.: Commutative ring theory. In: Cambridge Studies in Advanced Mathematics, vol. 8, 2nd edn. Cambridge University Press, Cambridge (1989) (Translated from the Japanese by M. Reid)Google Scholar
  14. 14.
    Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference Series in Mathematics, vol. 82. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1993)Google Scholar
  15. 15.
    Rezk, C.: A model category for categories. http://www.math.uiuc.edu/~rezk/cat-ho.dvi (1996)
  16. 16.
    Rosický, J.: Generalized Brown representability in homotopy categories. Theory Appl. Categ. 14(19), 451–479 (2005) (electronic)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rosický, J.: On combinatorial model categories. arXiv:0708.2185v1 [math.CT] (2007)
  18. 18.
    Rosický, J., Tholen, W.: Left-determined model categories and universal homotopy theories. Trans. Am. Math. Soc. 355(9), 3611–3623 (2003) (electronic)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MathematicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations