Left Determined Model Structures for Locally Presentable Categories
Article
First Online:
- 77 Downloads
Abstract
We extend a result of Cisinski on the construction of cofibrantly generated model structures from (Grothendieck) toposes to locally presentable categories and from monomorphism to more general cofibrations. As in the original case, under additional conditions, the resulting model structures are “left determined” in the sense of Rosický and Tholen.
Keywords
Weak factorization system Quillen model category HomotopyMathematics Subject Classifications (2000)
18C35 18G55 55U35Preview
Unable to display preview. Download preview PDF.
References
- 1.Adámek, J., Herrlich, H., Rosický, J., Tholen, W.: On a generalized small-object argument for the injective subcategory problem. Cah. Topol. Géom. Différ. Catég 43(2), 83–106 (2002)zbMATHGoogle Scholar
- 2.Adámek, J., Rosický, J.: Locally presentable and accessible categories. In: London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)Google Scholar
- 3.Beke, T.: Sheafifiable homotopy model categories. Math. Proc. Camb. Philos. Soc. 129(3), 447–475 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Cisinski, D.-C.: Théories homotopiques dans les topos. J. Pure Appl. Algebra 174(1), 43–82 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Hirschhorn, P.S.: Model categories and their localizations. In: Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)Google Scholar
- 6.Hovey, M.: Model categories. In: Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)Google Scholar
- 7.Johnstone, P.T.: Topos theory. In: London Mathematical Society Monographs, vol. 10. Academic Press [Harcourt Brace Jovanovich], London (1977)Google Scholar
- 8.Joyal, A., Tierney, M.: Strong stacks and classifying spaces. In: Category theory (Como, 1990). Lecture Notes in Math., vol. 1488, pp. 213–236. Springer, Berlin (1991)CrossRefGoogle Scholar
- 9.Kurz, A., Rosický, J.: Weak factorizations, fractions and homotopies. Appl. Categ. Struct. 13(2), 141–160 (2005)zbMATHCrossRefGoogle Scholar
- 10.Larson, R.G., Sweedler, M.E.: An associative orthogonal bilinear form for Hopf algebras. Am. J. Math. 91, 75–94 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Lárusson, F.: The homotopy theory of equivalence relations. arXiv:math/0611344v1 [math.AT], December (2006)
- 12.Mac Lane, S.: Categories for the working mathematician. In: Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1998)Google Scholar
- 13.Matsumura, H.: Commutative ring theory. In: Cambridge Studies in Advanced Mathematics, vol. 8, 2nd edn. Cambridge University Press, Cambridge (1989) (Translated from the Japanese by M. Reid)Google Scholar
- 14.Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference Series in Mathematics, vol. 82. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1993)Google Scholar
- 15.Rezk, C.: A model category for categories. http://www.math.uiuc.edu/~rezk/cat-ho.dvi (1996)
- 16.Rosický, J.: Generalized Brown representability in homotopy categories. Theory Appl. Categ. 14(19), 451–479 (2005) (electronic)MathSciNetzbMATHGoogle Scholar
- 17.Rosický, J.: On combinatorial model categories. arXiv:0708.2185v1 [math.CT] (2007)
- 18.Rosický, J., Tholen, W.: Left-determined model categories and universal homotopy theories. Trans. Am. Math. Soc. 355(9), 3611–3623 (2003) (electronic)zbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2009