Applied Categorical Structures

, Volume 18, Issue 6, pp 653–668 | Cite as

On Proper and Exterior Sequentiality

  • Luis Español
  • Jose Manuel García-CalcinesEmail author
  • M. Carmen Mínguez


In this article a sequential theory in the category of spaces and proper maps is described and developed. As a natural extension a sequential theory for exterior spaces and maps is obtained.


Exterior space Sequential space Proper map e-sequential space ω-sequential space Alexandroff compactification Topos of sheaves 

Mathematics Subject Classifications (2000)

54D55 54C10 54E99 18B99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arhangel’skii, A.: Some types of factor mappings and the relations between classes of topological spaces. Sov. Math. Dokl. 4, 1726–1729 (1963)Google Scholar
  2. 2.
    Baron, S.: The coreflective subcategory of sequential spaces. Can. Math. Bull. 11, 603–604 (1968)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Brown, R.: On sequentially proper maps and a sequential compactification. J. Lond. Math. Soc. 7(2), 515–522 (1973)Google Scholar
  4. 4.
    Dudley, R.M.: On sequential convergence. Trans. Am. Math. Soc. 112, 483–507 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dugundji, J.: Topology. Allyn and Bacon, Boston (1966)zbMATHGoogle Scholar
  6. 6.
    Edwards, D., Hastings, H.: Čech and Steenrod homotopy theories with applications to geometric topology. In: Lect. Notes Math., vol. 542. Springer, New York (1976)Google Scholar
  7. 7.
    Engelking, R.: General Topology. PWN & North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  8. 8.
    Franklin, S.P.: Spaces in which sequences suffice. Fund. Math. 57, 107–116 (1965)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Fréchet, M.: Sur quelques points du calcul functionnel. Rend. Circ. Mat. Palermo 22, 1–74 (1906)CrossRefGoogle Scholar
  10. 10.
    García Calcines, J.M., García Pinillos, M., Hernández Paricio, L.J.: A closed simplicial model category for proper homotopy and shape theories. Bull. Aust. Math. Soc. 57, 221–242 (1998)zbMATHCrossRefGoogle Scholar
  11. 11.
    García Calcines, J.M., Hernández Paricio, L.J.: Sequential homology. Topology Appl. 114, 201–225 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    García Calcines, J.M., Hernández Paricio, L.J., Rodríguez Machín, S.: Simplicial proper homotopy I, II. Rev. Acad. Cienc. Zaragoza 57(2), 89–112, 113–134 (2002)Google Scholar
  13. 13.
    Gotchev, I., Minchev, H.: On sequential properties of Noetherian topological spaces. Proceedings of the 18th Summer Conference on Topology and its Applications. Topology Proc. 28, 487–501 (2004)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hausdorff, F.: Grundzüge der Mengenlehere. Veit, Leipzig (1914)Google Scholar
  15. 15.
    Johnstone, P.T.: On a topological topos. Proc. Lond. Math. Soc. 38, 237–271 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  17. 17.
    Kisynski, J.: Convergence du type L. Colloq. Math. 7, 205–211 (1960)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Urysohn, P.: Sur les classes L de M. Fréchet. Enseign. Math. 25, 77–83 (1926)Google Scholar
  19. 19.
    Wilansky, A.: Between T 1 and T 2. Am. Math. Mon. 74, 261–266 (1967)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Luis Español
    • 1
  • Jose Manuel García-Calcines
    • 2
    Email author
  • M. Carmen Mínguez
    • 1
  1. 1.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaLogroñoSpain
  2. 2.Departamento de Matemática FundamentalUniversidad de La LagunaSan Cristóbal de La LagunaSpain

Personalised recommendations