Applied Categorical Structures

, Volume 18, Issue 6, pp 585–613 | Cite as

TTF Triples in Functor Categories

Article

Abstract

We characterize the hereditary torsion pairs of finite type in the functor category of a ring R that are associated to tilting torsion pairs in the category of R-modules. Moreover, we determine a condition under which they give rise to TTF triples.

Keywords

Functor categories Tilting modules Torsion-torsionfree triples 

Mathematics Subject Classifications (2000)

Primary 16D90 16E30 Secondary 16G99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeleri Hügel, L.: A key module over pure-semisimple hereditary rings. J. Algebra 307, 361–376 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angeleri Hügel, L., Bazzoni, S., Herbera, D.: A solution to the Baer splitting problem. Trans. Amer. Math. Soc. 360(5), 2409–2421 (2008)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Angeleri Hügel, L., Herbera, D., Trlifaj, J.: Tilting modules and Gorenstein rings. Forum Math. 18, 211–229 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Angeleri Hügel, L., Valenta, H.: A duality result for almost split sequences. Colloq. Math. 80, 267–292 (1999)MATHMathSciNetGoogle Scholar
  5. 5.
    Auslander, M.: Coherent functors. In: Proceedings of the Conference on Categorical Algbera (La Jolla1965), pp. 189–231. Spinger, New York (1966)Google Scholar
  6. 6.
    Auslander, M.: Functors and morphisms determined by objects. Lect. Notes in Pure and Appl. Math. 37, 1–244 (1978)MathSciNetGoogle Scholar
  7. 7.
    Auslander, M.: Isolated singularities and almost split sequences. In: Representation Theory II. LNM, vol. 117, pp. 194–242. Springer, New York (1986)Google Scholar
  8. 8.
    Bazzoni, S.: Cotilting modules are pure-injective. Proc. Amer. Math. Soc. 131, 3665–3672 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bazzoni, S.: When are definable classes tilting or cotiling classes? J. Algebra 320(12), 4281–4299 (2008)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bazzoni, S., Herbera, D.: One dimensional tilting modules are of finite type. Algebr. Represent. Theory 11(1), 43–61 (2008)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bazzoni, S., Herbera, D.: Cotorsion pairs generated by modules of bounded projective dimension. Israel J. Math (in press)Google Scholar
  12. 12.
    Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceux Perverse. Astèrisque 100, 19820Google Scholar
  13. 13.
    Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188(883), 207 pages (2007)Google Scholar
  14. 14.
    Buan, A.B., Krause, H.: Cotilting modules over tame hereditary algebras. Pacific J. Math. 211(1), 41–59 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Colby, R.R., Fuller, K.R.: Tilting, cotilting and serially tilted rings. Comm. Algebra 25(10), 3225–3237 (1997)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Colpi, R., Trlifaj, J.: Tilting modules and tilting torsion theories. J. Algebra 178, 614–634 (1995)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Crawley-Boevey, W.W.: Locally finitely presented additive categories. Comm. Algebra 22, 1644–1674 (1994)Google Scholar
  18. 18.
    Crawley-Boevey, W.W.: Infinite-dimensional modules in the representation theory of finite-dimensional algebras. In: Algebras and Modules, I (Trondheim, 1996). CMS Conf. Proc. Amer. Math. Soc., vol. 23, pp. 29–54. American Mathematical Society, Providence (1998)Google Scholar
  19. 19.
    Dickson, S.E.: A torsion theory for abelian categories. Trans. Amer. Math. Soc. 121, 223–235 (1966)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Facchini, A.: Divisible modules over integral domains. Ark. Mat. 26(1), 67–85 (1988)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Facchini, A.: A tilting module over commutative integral domains. Comm. Algebra 15(11), 2235–2250 (1987)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Fuchs, L., Salce, L.: Modules over non-noetherian domains. In: Mathematical Surveys and Monographs. American Mathematical Society, Providence (2001)Google Scholar
  23. 23.
    Garkusha, G.A.: Algebra i Analiz. St. Petersburg Math. J. 13(2), 149–200 (2002) (transl.)MATHMathSciNetGoogle Scholar
  24. 24.
    Gentle, R.: T.T.F. theories in abelian categories. Comm. Algebra 16, 877–908 (1996)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Goebel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. W. de Gruyter, Berlin (2006)MATHCrossRefGoogle Scholar
  26. 26.
    Gruson, L., Jensen, C.U.: Dimension cohomologique reliées aux functeurs \(\varprojlim^{(i)}\). In: Séminair d’algèbre. LNM, vol. 867, pp. 234–294 (1981)Google Scholar
  27. 27.
    Herzog, I.: The Ziegler spectrum of a locally coherent Grothendieck catgeory. Proc. London Math. Soc. 74, 503–558 (1997)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Jans, J.P.: Some aspects of torsion. Pacific J. Math. 15, 1249–1259 (1965)MATHMathSciNetGoogle Scholar
  29. 29.
    Jensen, C.U., Lenzing, H.: Model-theoretic algebra with particular emphasis on fields, rings, modules. In: Algebra, Logic and Applications, vol. 2. Gordon and Breach Science, New York (1989)Google Scholar
  30. 30.
    Kaplansky, I.: A characterization of Prüfer domains. J. Indian Math. Soc. 24, 279–281 (1960)MathSciNetGoogle Scholar
  31. 31.
    Kerner, O., Trlifaj, J.: Tilting classes over wild hereditary algebras. J. Algebra 290, 538–556 (2005)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Krause, H.: The spectrum of a module category. Mem. Amer. Math. Soc. 149(707), 125 pages (2001)Google Scholar
  33. 33.
    Krause, H.: A short proof for Auslander’s defect formula. Linear Algebra Appl. 365, 267–270 (2003)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Lukas, F.: Infinite-dimensional modules over wild hereditary algebras. J. London Math. Soc. 44, 401–419 (1991)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Lukas, F.: A class of infinite-rank modules over tame hereditary algebras. J. Algebra 158, 18–30 (1993)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Modoi, C.: Equivalences induced by adjoint functors. Comm. Algebra 31(5), 2327–2355 (2003)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Nicolás, P.: Sobre las ternas TTF. Ph.D. thesis, Murcia (2007)Google Scholar
  38. 38.
    Reiten, I., Ringel, C.M.: Infinite dimensional representations of canonical algebras. Canad. J. Math. 58, 180–224 (2006)MATHMathSciNetGoogle Scholar
  39. 39.
    Ringel, C.M.: Infinite dimensional representations of finite dimensional hereditary algebras. Sympos. Math. 23, 321–412 (1979)MathSciNetGoogle Scholar
  40. 40.
    Stenström, B.: Rings of quotients. In: Grundleheren der Math., vol. 217. Springer, New York (1975)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Informatica - Settore di MatematicaUniversita’ di VeronaVeronaItaly
  2. 2.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaPadovaItaly

Personalised recommendations