Applied Categorical Structures

, Volume 16, Issue 3, pp 389–419 | Cite as

Subobject Transformation Systems

  • Andrea CorradiniEmail author
  • Frank Hermann
  • Paweł Sobociński


Subobject transformation systems STS are proposed as a novel formal framework for the analysis of derivations of transformation systems based on the algebraic, double-pushout (DPO) approach. They can be considered as a simplified variant of DPO rewriting, acting in the distributive lattice of subobjects of a given object of an adhesive category. This setting allows a direct analysis of all possible notions of dependency between any two productions without requiring an explicit match. In particular, several equivalent characterizations of independence of productions are proposed, as well as a local Church–Rosser theorem in the setting of STS. Finally, we show how any derivation tree in an ordinary DPO grammar leads to an STS via a suitable construction and show that relational reasoning in the resulting STS is sound and complete with respect to the independence in the original derivation tree.


Graph transformation systems Adhesive categories Occurrence grammars 

Mathematics Subject Classifications (2000)

18B35 68Q10 68Q42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldan, P.: Modelling concurrent computations: from contextual Petri nets to graph grammars. PhD dissertation, Department of Computer Science, University of Pisa, March. Available as technical report no. TD-1/00 (2000)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., Heindel, T., König, B., Sobociński, P.: Processes for adhesive rewriting systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS, vol. 3921 of Lecture Notes in Computer Science, pp. 202–216. Springer Verlag (2006)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Concatenable graph processes: relating processes and derivation traces. In: Proc. of ICALP’98, vol. 1443 of Lecture Notes in Computer Science, pp. 283–295. Springer Verlag (1998)Google Scholar
  4. 4.
    Baldan, P., Corradini, A., Montanari, U.: Unfolding of double-pushout graph grammars is a coreflection. In: Ehrig, G., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Proceedings of the International Workshop on Theory and Application of Graph Transformations, vol. 1764 of Lecture Notes in Computer Science, pp. 145–163. Springer Verlag (1999)Google Scholar
  5. 5.
    Baldan, P., König, B., Stürmer, I.: Generating test cases for code generators by unfolding graph transformation systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT’04, vol. 3256 of Lecture Notes in Computer Science, pp. 194–209. Springer Verlag (2004)Google Scholar
  6. 6.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT’06, vol. 4178 of Lecture Notes in Computer Science, pp. 30–45. Springer Verlag (2006)Google Scholar
  7. 7.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fund. Inform. 26, 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation, Part I: basic concepts and double pushout approach. In: Rozenberg [21], Chapter 3 (1997)Google Scholar
  9. 9.
    Danos, V., Krivine, J., Sobociński, P.: General reversibility. In: Express ’06, Electronic Notes in Theoretical Computer Science 175(3), pp. 75–86. Elsevier (2007)Google Scholar
  10. 10.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in Theoretical Computer Science. Springer Verlag (2006)Google Scholar
  11. 11.
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation II: single pushout approach and comparison with double pushout approach. In: Rozenberg [21], Chapter 4 (1997)Google Scholar
  12. 12.
    Golz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inf. Control 57, 125–147 (1983)CrossRefGoogle Scholar
  13. 13.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Special issue of Fund. Inform. 26(3,4), 287–313 (1996)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Joyal, A., Street, R.: The geometry of tensor calculus. I. Adv. Math. 88, 55–112 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kreowski, H.-J.: Manipulation von Graphmanipulationen. PhD thesis, Technische Universität Berlin (1977)Google Scholar
  16. 16.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inf. Appl. 39(2), 511–546 (2005)zbMATHCrossRefGoogle Scholar
  17. 17.
    Leinster, T.: Higher Operads, Higher Categories. London Mathematical Lecture Notes. Cambridge University Press (2003)Google Scholar
  18. 18.
    Meseguer, J., Montanari, U.: Petri nets are monoids. Inform. and Comput. 88, 105–155 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical Computer Science. Springer Verlag (1985)Google Scholar
  20. 20.
    Ribeiro, L.: Parallel Composition and Unfolding Semantics of Graph Grammars. PhD thesis, Technische Universität Berlin (1996)Google Scholar
  21. 21.
    Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 1: Foundations. World Scientific (1997)Google Scholar
  22. 22.
    Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models, vol. 1491 of Lecture Notes in Computer Science, pp. 12–121. Springer Verlag (1996)Google Scholar
  23. 23.
    Street, R.: Higher categories, strings, cubes and simplex equations. Appl. Categ. Structures. 3, 29–77 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Winskel, G.: Event structures. In: Petri Nets: Applications and Relationships to Other Models of Concurrency, vol. 255 of Lecture Notes in Computer Science, pp. 325–392. Springer Verlag (1987)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Andrea Corradini
    • 1
    Email author
  • Frank Hermann
    • 2
  • Paweł Sobociński
    • 3
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Department of Electrical Engineering and Computer ScienceTechnical University of BerlinBerlinGermany
  3. 3.ECSUniversity of SouthamptonSouthamptonUK

Personalised recommendations