Advertisement

Applied Categorical Structures

, Volume 16, Issue 3, pp 313–332 | Cite as

On Minimal Coalgebras

  • H. Peter Gumm
Article

Abstract

We define an out-degree for F-coalgebras and show that the coalgebras of outdegree at most κ form a covariety. As a subcategory of all F-coalgebras, this class has a terminal object, which for many problems can stand in for the terminal F-coalgebra, which need not exist in general. As examples, we derive structure theoretic results about minimal coalgebras, showing that, for instance minimization of coalgebras is functorial, that products of finitely many minimal coalgebras exist and are given by their largest common subcoalgebra, that minimal subcoalgebras have no inner endomorphisms and show how minimal subcoalgebras can be constructed from Moore-automata. Since the elements of minimal subcoalgebras must correspond uniquely to the formulae of any logic characterizing observational equivalence, we give in the last section a straightforward and self-contained account of the coalgebraic logic of D. Pattinson and L. Schröder, which we believe is simpler and more direct than the original exposition.

Keywords

Coalgebra minimal coalgebra Moore-automata Products Modal logic Coalgebraic logic 

Mathematics Subject Classifications (2000)

18B20 68Q85 16W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P., Mendler, N.: A final coalgebra theorem. In: Pitt, D.H. et al. (eds.) Proceedings Category Theory and Computer Science, Lecture Notes in Computer Science, pp. 357–365. Springer (1989)Google Scholar
  2. 2.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. John Wiley & Sons (1990)Google Scholar
  3. 3.
    Gumm, H.P.: Elements of the General Theory of Coalgebras. LUATCS 99, Rand Afrikaans University, Johannesburg, South Africa (1999)Google Scholar
  4. 4.
    Gumm, H.P.: From T-coalgebras to filter structures and transition systems. In: Fiadeiro, D.H. et al. (eds.) Algebra and Coalgebra in Computer Science, vol. 3629 of Lecture Notes in Computer Science, pp. 194–212. Springer (2005)Google Scholar
  5. 5.
    Gumm, H.P., Schröder, T.: Products of coalgebras. Algebra Universalis 46, 163–185 (2001)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Gumm, H.P., Schröder, T.: Coalgebras of bounded type. Math. Structures Comput. Sci. 12, 565–578 (2002)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra Universalis 53, 229–252 (2005)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. Assoc. Comput. Mach. 32, 137–161 (1985)MathSciNetMATHGoogle Scholar
  9. 9.
    Ihringer, Th., Gumm, H.P.: Allgemeine Algebra. Heldermann Verlag (2003)Google Scholar
  10. 10.
    Kianpi, M., Jugnia, C.N.: A simplification functor for coalgebras. Int. J. Math. Math. Sci. (2006)Google Scholar
  11. 11.
    Koubek, V.: Set functors. Commun. Math. Univ. Carolinae 12(1), 175–195 (1971)MathSciNetMATHGoogle Scholar
  12. 12.
    Manes, E.G.: Implementing collection classes with monads. Math. Structures Comput. Sci. 8, 231–276 (1998)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Log. 45, 19–33 (2004)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorigi, D., de Simone, R. (eds.) Proceedings of CONCUR ’98, number 1466 in LNCS, pp. 194–218 (1998)Google Scholar
  15. 15.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comp. Sci. 249(1), 3–80 (2000)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. In: Sassone, V., (ed.) Foundations of Software Science and Computation Structures (FOSSACS), Lecture Notes in Computer Science, pp. 440–454. Springer (2005)Google Scholar
  17. 17.
    Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain equations. SIAM J. Comput. 11(4), 761–783 (1982)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Trnková, V.: On descriptive classification of set-functors I. Commun. Math. Univ. Carolinae 12(1), 323–352 (1971)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany

Personalised recommendations