Advertisement

Applied Categorical Structures

, Volume 15, Issue 3, pp 259–323 | Cite as

Yoneda Structures from 2-toposes

  • Mark WeberEmail author
Article

Abstract

A 2-categorical generalisation of the notion of elementary topos is provided, and some of the properties of the Yoneda structure (Street and Walters, J. Algebra, 50:350–379, 1978) it generates are explored. Results enabling one to exhibit objects as cocomplete in the sense definable within a Yoneda structure are presented. Examples relevant to the globular approach to higher dimensional category theory are discussed. This paper also contains some expository material on the theory of fibrations internal to a finitely complete 2-category (Street, Lecture Notes in Math., 420:104–133, 1974) and provides a self-contained development of the necessary background material on Yoneda structures.

Keywords

2-topos Fibration Yoneda structure Internal category theory 

Mathematics Subject Classifications (2000)

18A05 18A15 18B25 18D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baez, J., Crans, A.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baez, J., Dolan, J.: Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135, 145–206 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baez, J., Lauda, A.: Higher-dimensional algebra V: 2-groups. Theory Appl. Categ. 12, 423–491 (2004)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Baez, J., Schreiber, U.: Higher gauge theory. arXiv:math.DG/0511710 (2005)Google Scholar
  6. 6.
    Batanin, M.: Computads for finitary monads on globular sets. Contemp. Math. 230, 37–57 (1998)MathSciNetGoogle Scholar
  7. 7.
    Batanin, M.: Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136, 39–103 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Batanin, M.: The Eckmann–Hilton argument, higher operads and E n-spaces. arXiv:math.CT/0207281 (2002)Google Scholar
  9. 9.
    Batanin, M.: The combinatorics of iterated loop spaces. arXiv:math.CT/0301221 (2003)Google Scholar
  10. 10.
    Bénabou, J.: Fibred categories and the foundation of naive category theory. J. Symbolic Logic 50, 10–37 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bourn, D.: Sur les ditopos. C. R. Acad. Sci. Paris 279, 911–913 (1974)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Carboni, A., Johnstone, P.T.: Connected limits, familial representability and Artin glueing. Math. Structures Comput. Sci. 5, 441–459 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ehresmann, C.: Gattungen von lokalen strukturen. Jber. Deutsch. Math. Verein 60, 49–77 (1958)MathSciNetGoogle Scholar
  14. 14.
    Freyd, P., Street, R.: On the size of categories. Theory Appl. Categ. 1, 174–181 (1995)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gray, J.W.: Fibred and cofibred categories. In: Proceedings Conference on Categorical Algebra at La Jolla, pp. 21–83. Springer, Berlin (1966)Google Scholar
  16. 16.
    Grothendieck, A.: Catégories fibrées et descente. Lecture Notes in Math. 224, 145–194 (1970)Google Scholar
  17. 17.
    Hermida, C.: Some properties of fib as a fibred 2-category. JPAA 134(1), 83–109 (1999)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. In: Oxford Logic Guides, vol. 1. Oxford Science, Oxford, UK (2002)Google Scholar
  19. 19.
    Kelly, G.M.: Basic concepts of enriched category theory. In: LMS Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982)Google Scholar
  20. 20.
    Kelly, G.M., Street, R.: Review of the elements of 2-categories. Lecture Notes in Math. 420, 75–103 (1974)MathSciNetGoogle Scholar
  21. 21.
    Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an adjoint functor. In: Proceedings of the American Mathematical Society Symposium on Pure Mathematics, vol. XVII, pp. 1–14 (1970)Google Scholar
  22. 22.
    Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Berlin (1991)Google Scholar
  23. 23.
    Penon, J.: Sous-catégories classifiée. C. R. Acad. Sci. Paris 278, 475–477 (1974)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Street, R.: Elementary cosmoi. Lecture Notes in Math. 420, 134–180 (1974)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Street, R.: Fibrations and Yoneda’s lemma in a 2-category. Lecture Notes in Math. 420, 104–133 (1974)MathSciNetGoogle Scholar
  26. 26.
    Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8, 149–181 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Street, R.: Cosmoi of internal categories. Trans. Amer. Math. Soc. 258, 271–318 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Street, R.: Fibrations in bicategories. Cahiers Topologie. Géom. Differentielle Catégo. 21, 111–160 (1980)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Street, R.: The petit topos of globular sets. J. Pure Appl. Algebra 154, 299–315 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Street, R., Walters, R.F.C.: Yoneda structures on 2-categories. J. Algebra 50, 350–379 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Weber, M.: Operads within monoidal pseudo algebra II (in preperation)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematics, Division of ICSMacquarie UniversitySydneyAustralia

Personalised recommendations