Yoneda Structures from 2-toposes
- 170 Downloads
- 6 Citations
Abstract
A 2-categorical generalisation of the notion of elementary topos is provided, and some of the properties of the Yoneda structure (Street and Walters, J. Algebra, 50:350–379, 1978) it generates are explored. Results enabling one to exhibit objects as cocomplete in the sense definable within a Yoneda structure are presented. Examples relevant to the globular approach to higher dimensional category theory are discussed. This paper also contains some expository material on the theory of fibrations internal to a finitely complete 2-category (Street, Lecture Notes in Math., 420:104–133, 1974) and provides a self-contained development of the necessary background material on Yoneda structures.
Keywords
2-topos Fibration Yoneda structure Internal category theoryMathematics Subject Classifications (2000)
18A05 18A15 18B25 18D05Preview
Unable to display preview. Download preview PDF.
References
- 1.Baez, J., Crans, A.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004)zbMATHMathSciNetGoogle Scholar
- 2.Baez, J., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36, 6073–6105 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
- 3.Baez, J., Dolan, J.: Higher-dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math. 135, 145–206 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Baez, J., Lauda, A.: Higher-dimensional algebra V: 2-groups. Theory Appl. Categ. 12, 423–491 (2004)zbMATHMathSciNetGoogle Scholar
- 5.Baez, J., Schreiber, U.: Higher gauge theory. arXiv:math.DG/0511710 (2005)Google Scholar
- 6.Batanin, M.: Computads for finitary monads on globular sets. Contemp. Math. 230, 37–57 (1998)MathSciNetGoogle Scholar
- 7.Batanin, M.: Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136, 39–103 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Batanin, M.: The Eckmann–Hilton argument, higher operads and E n-spaces. arXiv:math.CT/0207281 (2002)Google Scholar
- 9.Batanin, M.: The combinatorics of iterated loop spaces. arXiv:math.CT/0301221 (2003)Google Scholar
- 10.Bénabou, J.: Fibred categories and the foundation of naive category theory. J. Symbolic Logic 50, 10–37 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
- 11.Bourn, D.: Sur les ditopos. C. R. Acad. Sci. Paris 279, 911–913 (1974)zbMATHMathSciNetGoogle Scholar
- 12.Carboni, A., Johnstone, P.T.: Connected limits, familial representability and Artin glueing. Math. Structures Comput. Sci. 5, 441–459 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
- 13.Ehresmann, C.: Gattungen von lokalen strukturen. Jber. Deutsch. Math. Verein 60, 49–77 (1958)MathSciNetGoogle Scholar
- 14.Freyd, P., Street, R.: On the size of categories. Theory Appl. Categ. 1, 174–181 (1995)zbMATHMathSciNetGoogle Scholar
- 15.Gray, J.W.: Fibred and cofibred categories. In: Proceedings Conference on Categorical Algebra at La Jolla, pp. 21–83. Springer, Berlin (1966)Google Scholar
- 16.Grothendieck, A.: Catégories fibrées et descente. Lecture Notes in Math. 224, 145–194 (1970)Google Scholar
- 17.Hermida, C.: Some properties of fib as a fibred 2-category. JPAA 134(1), 83–109 (1999)zbMATHMathSciNetGoogle Scholar
- 18.Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. In: Oxford Logic Guides, vol. 1. Oxford Science, Oxford, UK (2002)Google Scholar
- 19.Kelly, G.M.: Basic concepts of enriched category theory. In: LMS Lecture Note Series, vol. 64. Cambridge University Press, Cambridge (1982)Google Scholar
- 20.Kelly, G.M., Street, R.: Review of the elements of 2-categories. Lecture Notes in Math. 420, 75–103 (1974)MathSciNetGoogle Scholar
- 21.Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an adjoint functor. In: Proceedings of the American Mathematical Society Symposium on Pure Mathematics, vol. XVII, pp. 1–14 (1970)Google Scholar
- 22.Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer, Berlin (1991)Google Scholar
- 23.Penon, J.: Sous-catégories classifiée. C. R. Acad. Sci. Paris 278, 475–477 (1974)zbMATHMathSciNetGoogle Scholar
- 24.Street, R.: Elementary cosmoi. Lecture Notes in Math. 420, 134–180 (1974)CrossRefMathSciNetGoogle Scholar
- 25.Street, R.: Fibrations and Yoneda’s lemma in a 2-category. Lecture Notes in Math. 420, 104–133 (1974)MathSciNetGoogle Scholar
- 26.Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8, 149–181 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
- 27.Street, R.: Cosmoi of internal categories. Trans. Amer. Math. Soc. 258, 271–318 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
- 28.Street, R.: Fibrations in bicategories. Cahiers Topologie. Géom. Differentielle Catégo. 21, 111–160 (1980)zbMATHMathSciNetGoogle Scholar
- 29.Street, R.: The petit topos of globular sets. J. Pure Appl. Algebra 154, 299–315 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
- 30.Street, R., Walters, R.F.C.: Yoneda structures on 2-categories. J. Algebra 50, 350–379 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
- 31.Weber, M.: Operads within monoidal pseudo algebra II (in preperation)Google Scholar