Bounded and Unitary Elements in Pro-C*-algebras
- 79 Downloads
- 3 Citations
Abstract
A pro-C*-algebra is a (projective) limit of C*-algebras in the category of topological *-algebras. From the perspective of non-commutative geometry, pro-C*-algebras can be seen as non-commutative k-spaces. An element of a pro-C*-algebra is bounded if there is a uniform bound for the norm of its images under any continuous *-homomorphism into a C*-algebra. The *-subalgebra consisting of the bounded elements turns out to be a C*-algebra. In this paper, we investigate pro-C*-algebras from a categorical point of view. We study the functor (−) b that assigns to a pro-C*-algebra the C*-algebra of its bounded elements, which is the dual of the Stone-Čech-compactification. We show that (−) b is a coreflector, and it preserves exact sequences. A generalization of the Gelfand duality for commutative unital pro-C*-algebras is also presented.
Key words
pro-C*-algebra Gelfand duality Stone-Čech-compactification Tychonoff space strongly functionally generated k-space kR-space bounded spectrally bounded coreflection exactMathematics Subject Classification (2000)
18A05 46H05 46J05 46K05Preview
Unable to display preview. Download preview PDF.
References
- 1.Allan, G.R.: Stable inverse-limit sequences, with application to Fréchet algebras. Studia Math. 121(3), 277–308 (1996)MathSciNetzbMATHGoogle Scholar
- 2.Apostol, C.: \(b\sp{\ast}\)-algebras and their representation. J. London Math. Soc. (2)3, 30–38 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
- 3.Arkhangel'sk, A.V.: Topological Function Spaces. Mathematics and its Applications, vol. 78 (Soviet Series). Kluwer, Dordrecht. Translated from the Russian by R. A. M. Hoksbergen (1992)Google Scholar
- 4.Arveson, W.: The harmonic analysis of automorphism groups. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. vol. 38, pp. 199–269. Amer. Math. Soc., Providence, Rhode Island (1982)Google Scholar
- 5.Bhatt, S.J., Karia, D.J.: An intrinsic characterization of Pro-\(C\sp *\)-algebras and its applications. J. Math. Anal. Appl. 175(1), 68–80 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
- 6.Boardman, M.E.: Relative spectra in complete lmc-algebras with applications. Illinois J. Math. 39(1), 119–139 (1995)MathSciNetzbMATHGoogle Scholar
- 7.Bourdaud, G.: Quelques aspects de la dualité en analyse fonctionnelle. Diagrammes 5, B1–B12 (1981)MathSciNetGoogle Scholar
- 8.Bourdaud, G.: Sur la dualité des algèbres localement convexes. C. R. Acad. Sci. Paris Sér. A–B 281(23), Ai, A1011–Ai, A1014 (1975)MathSciNetGoogle Scholar
- 9.Brown, R.: Function spaces and product topologies. Quart. J. Math. Oxford Ser. (2)15, 238–250 (1964)CrossRefMathSciNetzbMATHGoogle Scholar
- 10.Chidami, M., El Harti, R.: Calcul fonctionnel holomorphe en dimension infinie dans les lmca. Rend. Circ. Mat. Palermo (2)48(3), 541–548 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
- 11.Dixmier, J.: \(C\sp*\)-algebras. Translated from the French by Francis Jellett, North-Holland Mathematical Library, vol. 15. North-Holland, Amsterdam (1977)Google Scholar
- 12.Dubuc, E.J., Porta, H.: Convenient categories of topological algebras, and their duality theory. J. Pure Appl. Algebra 1(3), 281–316 (1971)CrossRefMathSciNetzbMATHGoogle Scholar
- 13.Dubuc, E.J., Porta, H.: Uniform spaces, Spanier quasitopologies, and a duality for locally convex algebras. J. Austral. Math. Soc. Ser. A 29(1), 99–128 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.El Harti, R.: Contractible Fréchet algebras. Proc. Amer. Math. Soc. 132(5):1251–1255 (electronic) (2004)CrossRefMathSciNetzbMATHGoogle Scholar
- 15.Engelking, R.: General Topology, vol. 6. Sigma Series in Pure Mathematics, 2nd edn. Heldermann Verlag, Berlin. Translated from the Polish by the author (1989)Google Scholar
- 16.Inoue, Atsushi: Locally \(C\sp{\ast}\)-algebra. Mem. Fac. Sci. Kyushu Univ. Ser. A 25, 197–235 (1971)MathSciNetzbMATHGoogle Scholar
- 17.Kelley, J.L.: General Topology. Van Nostrand, Toronto-New York-London (1955)zbMATHGoogle Scholar
- 18.Köthe, G.: Topological vector spaces. I. Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer Berlin Heidelberg New York (1969)Google Scholar
- 19.Lukács, G.: A convenient subcategory of Tych. Appl. Categ. Structures 12(4), 369–377 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
- 20.Lukács, G.: Lifted closure operators. Preprint, ArXiv: math.CT/0502410Google Scholar
- 21.Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 2nd edn., vol. 5. Springer, Berlin Heidelberg New York (1998)Google Scholar
- 22.Michael, E.A.: Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc. 1952(11), 79 (1952)MathSciNetGoogle Scholar
- 23.Palmer, T.W.: Applications Algebras and Banach algebras and the general theory of \(\sp *\)-algebras, Encyclopedia of Mathematics and its Applications. Algebras and Banach algebras, vol. 1, vol. 49. Cambridge University Press, Cambridge (1994)Google Scholar
- 24.Palmer, T.W.: Banach algebras and the general theory of \(*\)-algebras. Encyclopedia of Mathematics and its Applications, vol 2, vol. 79. \(*\)-algebras. Cambridge University Press, Cambridge (2001)Google Scholar
- 25.Pelletier, J.W., Rosický, J.: On the equational theory of \(C\sp *\)-algebras. Algebra Universalis 30(2), 275–284 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
- 26.Pelletier, J.W., Rosický, J.: Generating the equational theory of \(C\sp *\)-algebras and related categories. In: Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), pp. 163–180. World Scientific, Teaneck, New Jersey (1989)Google Scholar
- 27.Phillips, N.C.: Inverse limits of \(C\sp *\)-algebras. J. Operator Theory 19(1), 159–195 (1988)MathSciNetzbMATHGoogle Scholar
- 28.Phillips, N.C.: Inverse limits of \(C\sp *\)-algebras and applications. In: Operator Algebras and Applications. London Math. Soc. Lecture Note Ser. vol. 1, vol. 135, pp. 127–185. Cambridge University Press, Cambridge (1988)Google Scholar
- 29.Phillips, N.C.: Representable \(K\)-theory for \(\sigma\)-\(C\sp *\)-algebras. \(K\)-Theory 3(5), 441–478 (1989)CrossRefMathSciNetzbMATHGoogle Scholar
- 30.Phillips, N.C.: How many exponentials? Amer. J. Math. 116(6), 1513–1543 (1994)CrossRefMathSciNetGoogle Scholar
- 31.Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Graduate Texts in Mathematics, 2nd edn., vol. 3. Springer, Berlin Heidelberg New York (1999)Google Scholar
- 32.Schmüdgen, K.: Über LMC-Algebren. Math. Nachr. 68, 167–182 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
- 33.Sebestyén, Z.: Every \(C\sp{\ast}\)-seminorm is automatically submultiplicative. Period. Math. Hungar. 10(1), 1–8 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
- 34.Steenrod, N.E.: A convenient category of topological spaces. Michigan Math. J. 14, 133–152 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
- 35.Van Osdol, D.H.: \(C\sp \ast\)-algebras and cohomology. In: Categorical topology (Toledo, Ohio, 1983). Sigma Ser. Pure Math. vol. 5, pp. 582–587. Heldermann, Berlin (1984)Google Scholar
- 36.Żelazko, W: Banach algebras, Translated from the Polish by Marcin E. Kuczma. Elsevier, Amsterdam-London-New York (1973)zbMATHGoogle Scholar