Applied Categorical Structures

, Volume 14, Issue 2, pp 151–164 | Cite as

Bounded and Unitary Elements in Pro-C*-algebras

Article

Abstract

A pro-C*-algebra is a (projective) limit of C*-algebras in the category of topological *-algebras. From the perspective of non-commutative geometry, pro-C*-algebras can be seen as non-commutative k-spaces. An element of a pro-C*-algebra is bounded if there is a uniform bound for the norm of its images under any continuous *-homomorphism into a C*-algebra. The *-subalgebra consisting of the bounded elements turns out to be a C*-algebra. In this paper, we investigate pro-C*-algebras from a categorical point of view. We study the functor (−)b that assigns to a pro-C*-algebra the C*-algebra of its bounded elements, which is the dual of the Stone-Čech-compactification. We show that (−)b is a coreflector, and it preserves exact sequences. A generalization of the Gelfand duality for commutative unital pro-C*-algebras is also presented.

Key words

pro-C*-algebra Gelfand duality Stone-Čech-compactification Tychonoff space strongly functionally generated k-space kR-space bounded spectrally bounded coreflection exact 

Mathematics Subject Classification (2000)

18A05 46H05 46J05 46K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, G.R.: Stable inverse-limit sequences, with application to Fréchet algebras. Studia Math. 121(3), 277–308 (1996)MathSciNetMATHGoogle Scholar
  2. 2.
    Apostol, C.: \(b\sp{\ast}\)-algebras and their representation. J. London Math. Soc. (2)3, 30–38 (1971)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Arkhangel'sk, A.V.: Topological Function Spaces. Mathematics and its Applications, vol. 78 (Soviet Series). Kluwer, Dordrecht. Translated from the Russian by R. A. M. Hoksbergen (1992)Google Scholar
  4. 4.
    Arveson, W.: The harmonic analysis of automorphism groups. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. vol. 38, pp. 199–269. Amer. Math. Soc., Providence, Rhode Island (1982)Google Scholar
  5. 5.
    Bhatt, S.J., Karia, D.J.: An intrinsic characterization of Pro-\(C\sp *\)-algebras and its applications. J. Math. Anal. Appl. 175(1), 68–80 (1993)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Boardman, M.E.: Relative spectra in complete lmc-algebras with applications. Illinois J. Math. 39(1), 119–139 (1995)MathSciNetMATHGoogle Scholar
  7. 7.
    Bourdaud, G.: Quelques aspects de la dualité en analyse fonctionnelle. Diagrammes 5, B1–B12 (1981)MathSciNetGoogle Scholar
  8. 8.
    Bourdaud, G.: Sur la dualité des algèbres localement convexes. C. R. Acad. Sci. Paris Sér. A–B 281(23), Ai, A1011–Ai, A1014 (1975)MathSciNetGoogle Scholar
  9. 9.
    Brown, R.: Function spaces and product topologies. Quart. J. Math. Oxford Ser. (2)15, 238–250 (1964)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Chidami, M., El Harti, R.: Calcul fonctionnel holomorphe en dimension infinie dans les lmca. Rend. Circ. Mat. Palermo (2)48(3), 541–548 (1999)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Dixmier, J.: \(C\sp*\)-algebras. Translated from the French by Francis Jellett, North-Holland Mathematical Library, vol. 15. North-Holland, Amsterdam (1977)Google Scholar
  12. 12.
    Dubuc, E.J., Porta, H.: Convenient categories of topological algebras, and their duality theory. J. Pure Appl. Algebra 1(3), 281–316 (1971)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Dubuc, E.J., Porta, H.: Uniform spaces, Spanier quasitopologies, and a duality for locally convex algebras. J. Austral. Math. Soc. Ser. A 29(1), 99–128 (1980)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    El Harti, R.: Contractible Fréchet algebras. Proc. Amer. Math. Soc. 132(5):1251–1255 (electronic) (2004)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Engelking, R.: General Topology, vol. 6. Sigma Series in Pure Mathematics, 2nd edn. Heldermann Verlag, Berlin. Translated from the Polish by the author (1989)Google Scholar
  16. 16.
    Inoue, Atsushi: Locally \(C\sp{\ast}\)-algebra. Mem. Fac. Sci. Kyushu Univ. Ser. A 25, 197–235 (1971)MathSciNetMATHGoogle Scholar
  17. 17.
    Kelley, J.L.: General Topology. Van Nostrand, Toronto-New York-London (1955)MATHGoogle Scholar
  18. 18.
    Köthe, G.: Topological vector spaces. I. Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer Berlin Heidelberg New York (1969)Google Scholar
  19. 19.
    Lukács, G.: A convenient subcategory of Tych. Appl. Categ. Structures 12(4), 369–377 (2004)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Lukács, G.: Lifted closure operators. Preprint, ArXiv: math.CT/0502410Google Scholar
  21. 21.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 2nd edn., vol. 5. Springer, Berlin Heidelberg New York (1998)Google Scholar
  22. 22.
    Michael, E.A.: Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc. 1952(11), 79 (1952)MathSciNetGoogle Scholar
  23. 23.
    Palmer, T.W.: Applications Algebras and Banach algebras and the general theory of \(\sp *\)-algebras, Encyclopedia of Mathematics and its Applications. Algebras and Banach algebras, vol. 1, vol. 49. Cambridge University Press, Cambridge (1994)Google Scholar
  24. 24.
    Palmer, T.W.: Banach algebras and the general theory of \(*\)-algebras. Encyclopedia of Mathematics and its Applications, vol 2, vol. 79. \(*\)-algebras. Cambridge University Press, Cambridge (2001)Google Scholar
  25. 25.
    Pelletier, J.W., Rosický, J.: On the equational theory of \(C\sp *\)-algebras. Algebra Universalis 30(2), 275–284 (1993)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Pelletier, J.W., Rosický, J.: Generating the equational theory of \(C\sp *\)-algebras and related categories. In: Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), pp. 163–180. World Scientific, Teaneck, New Jersey (1989)Google Scholar
  27. 27.
    Phillips, N.C.: Inverse limits of \(C\sp *\)-algebras. J. Operator Theory 19(1), 159–195 (1988)MathSciNetMATHGoogle Scholar
  28. 28.
    Phillips, N.C.: Inverse limits of \(C\sp *\)-algebras and applications. In: Operator Algebras and Applications. London Math. Soc. Lecture Note Ser. vol. 1, vol. 135, pp. 127–185. Cambridge University Press, Cambridge (1988)Google Scholar
  29. 29.
    Phillips, N.C.: Representable \(K\)-theory for \(\sigma\)-\(C\sp *\)-algebras. \(K\)-Theory 3(5), 441–478 (1989)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Phillips, N.C.: How many exponentials? Amer. J. Math. 116(6), 1513–1543 (1994)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces. Graduate Texts in Mathematics, 2nd edn., vol. 3. Springer, Berlin Heidelberg New York (1999)Google Scholar
  32. 32.
    Schmüdgen, K.: Über LMC-Algebren. Math. Nachr. 68, 167–182 (1975)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Sebestyén, Z.: Every \(C\sp{\ast}\)-seminorm is automatically submultiplicative. Period. Math. Hungar. 10(1), 1–8 (1979)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Steenrod, N.E.: A convenient category of topological spaces. Michigan Math. J. 14, 133–152 (1967)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Van Osdol, D.H.: \(C\sp \ast\)-algebras and cohomology. In: Categorical topology (Toledo, Ohio, 1983). Sigma Ser. Pure Math. vol. 5, pp. 582–587. Heldermann, Berlin (1984)Google Scholar
  36. 36.
    Żelazko, W: Banach algebras, Translated from the Polish by Marcin E. Kuczma. Elsevier, Amsterdam-London-New York (1973)MATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of MathematicsUniversity Hassan I, FST de SettatSettatMorocco
  2. 2.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations