Applied Categorical Structures

, Volume 13, Issue 5–6, pp 371–388 | Cite as

Flow does not Model Flows up to Weak Dihomotopy

  • Philippe GaucherEmail author


We prove that the category of flows cannot be the underlying category of a model category whose corresponding homotopy types are the flows up to weak dihomotopy. Some hints are given to overcome this problem. In particular, a new approach of dihomotopy involving simplicial presheaves over an appropriate small category is proposed. This small category is obtained by taking a full subcategory of a locally presentable version of the category of flows.


concurrency homotopy weak factorizarion system cofibrantly generated modelcategory locally presentable model category combinatorial model category directed homotopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Herrlich, H., Rosický, J. and Tholen, W.: On a generalized small-object argument for the injective subcategory problem, Cahiers Topologie G˝om. Diff˝rentielle Cat˝g. 43(2) (2002), 83-106. zbMATHGoogle Scholar
  2. 2.
    Adámek, J. and Rosický, J.: Locally Presentable and Accessible Categories, Cambridge University Press, Cambridge, 1994. zbMATHGoogle Scholar
  3. 3.
    Beke, T.: Sheafifiable homotopy model categories, Math. Proc. Cambridge Philos. Soc. 129(3) (2000), 447-475. CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bousfield, A. K. and Kan, D. M.: Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer-Verlag, Berlin, 1972. zbMATHGoogle Scholar
  5. 5.
    Borceux, F.: Handbook of Categorical Algebra, Vol. 1, Cambridge University Press, Cambridge, 1994. Basic category theory. Google Scholar
  6. 6.
    Borceux, F.: Handbook of Categorical Algebra, Vol. 2, Cambridge University Press, Cambridge, 1994. Categories and structures. Google Scholar
  7. 7.
    Brown, R.: Topology, 2nd edn, Ellis Horwood Ltd., Chichester, 1988. A geometric account of general topology, homotopy types and the fundamental groupoid. zbMATHGoogle Scholar
  8. 8.
    Dugger, D.: Combinatorial model categories have presentations, Adv. Math. 164(1) (2001), 177-201. CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Dugger, D.: Universal homotopy theories, Adv. Math. 164(1) (2001), 144-176. CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dugger, D.: Notes on Delta-generated spaces, 2003. Google Scholar
  11. 11.
    Gaucher, P.: A model category for the homotopy theory of concurrency, Homology, Homotopy and Applications 5(1) (2003), 549-599. zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gaucher, P.: S-homotopy as an analogue of homotopy of spaces, 2004. arXiv:math.AT/0401033. Google Scholar
  13. 13.
    Gaucher, P.: Comparing globular complex and flow, New York J. Math. 11 (2005), 97-150. MathSciNetzbMATHGoogle Scholar
  14. 14.
    Goerss, P. G. and Jardine, J. F.: Simplicial Homotopy Theory, Birkhäuser, Basel, 1999. zbMATHGoogle Scholar
  15. 15.
    Hirschhorn, P. S.: Model Categories and Their Localizations, Math. Surveys Monographs 99, Amer. Math. Soc., Providence, RI, 2003. zbMATHGoogle Scholar
  16. 16.
    Hovey, M.: Model Categories, Amer. Math. Soc., Providence, RI, 1999. zbMATHGoogle Scholar
  17. 17.
    Lewis, L. G.: The stable category and generalized Thom spectra, PhD thesis, University of Chicago, 1978. Google Scholar
  18. 18.
    May, J. P.: A Concise Course in Algebraic Topology, University of Chicago Press, Chicago, IL, 1999. zbMATHGoogle Scholar
  19. 19.
    Quillen, D. G.: Homotopical Algebra, Springer-Verlag, Berlin, 1967. zbMATHGoogle Scholar
  20. 20.
    Smith, J.: A really convenient category of topological spaces, unpublished. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Preuves Programmes et SystèmesUniversit˝ Paris 7-Denis DiderotParis Cedex 05France

Personalised recommendations