Applied Psychophysiology and Biofeedback

, Volume 44, Issue 3, pp 235–245 | Cite as

Effect of Complexity on Frontal Event Related Desynchronisation in Mental Rotation Task

  • Greeshma SharmaEmail author
  • Ronnie Daniel
  • Sushil Chandra
  • Ram Singh


A complexity (orientation and shape of stimuli) in the mental rotation (MR) task often affects reaction time (RT) and response accuracy, but the nature of such reflections in neuroscientific research is commonly undocumented. A number of studies have explored the effect of complexity and subsequently noted down the differences in performance. However, a few studies explored complexity (in the term of angular disparity) and cognitive strategies with respect to correct responses only. In contrast, the present study investigated frontal alpha desynchronization with reference to the complexity and proportions of correct and incorrect responses. Behavioral and neurophysiological responses were investigated to understand the switching between strategies (Analytic vs. Holistic). Results showed longer response time with respect to increased complexity. Frontal alpha desynchronization increased for difficult trials and incorrect responses, suggesting a higher utilization of cognitive resources at the frontal region during the MR task. Higher left frontal desynchronization reflected a trading off between strategies for difficult trials. Taken together, these findings suggest that the effect of stimuli complexity is more nuanced than implied by a simple hemispheric dichotomy for frontal cortex and discuss possible future directions to better understand the multitudinous brain mechanisms involved in MR.


Mental rotation Event-related desynchronization/synchronization Holistic versus analytic strategy Frontal alpha-band 



This study was supported by Director, INMAS, DRDO, Delhi. The EEG data acquired by Nidhi Gupta and Shweta Saraswat. Scales used for this study were designed through the support of Delhi University.

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the INMAS ethical committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. Akiyama, M., Tero, A., Kawasaki, M., Nishiura, Y., & Yamaguchi, Y. (2017). Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory. Scientific Reports, 7, 42776.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Boone, A. P., & Hegarty, M. (2017). Sex differences in mental rotation tasks: Not just in the mental rotation process! Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(7), 1005.PubMedCrossRefGoogle Scholar
  3. Brzezicka, A., Kamiński, J., Kamińska, O. K., Wołyńczyk-Gmaj, D., & Sedek, G. (2017). Frontal EEG alpha band asymmetry as a predictor of reasoning deficiency in depressed people. Cognition and Emotion, 31(5), 868–878.PubMedCrossRefGoogle Scholar
  4. Chandra, S., Sharma, G., Sharma, M., Mittal, A. P., & Jha, D. (2016). Workload regulation by Sudarshan Kriya: an EEG and ECG perspective. Brain Informatics, 4, 1–13.Google Scholar
  5. Chen, X., Bin, G., Daly, I., & Gao, X. (2013). Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task. Neuroscience Letters, 541, 238–242.PubMedCrossRefGoogle Scholar
  6. Corballis, M. C. (1997). Mental rotation and the right hemisphere. Brain and Language, 57(1), 100–121.PubMedCrossRefGoogle Scholar
  7. Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use Welch’s t-test instead of Student’s t-test. International Review of Social Psychology, 30(1), 92–101.CrossRefGoogle Scholar
  8. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.PubMedCrossRefGoogle Scholar
  9. Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44, 111–123.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gardony, A. L., Eddy, M. D., Brunyé, T. T., & Taylor, H. A. (2017). Cognitive strategies in the mental rotation task revealed by EEG spectral power. Brain and Cognition, 118, 1–18.PubMedCrossRefGoogle Scholar
  11. Gogos, A., Gavrilescu, M., Davison, S., Searle, K., Adams, J., Rossell, S. L., et al. (2010). Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: An fMRI study. Neuropsychologia, 48(2), 529–535.PubMedCrossRefGoogle Scholar
  12. Harris, I. M., & Miniussi, C. (2003). Parietal lobe contribution to mental rotation demonstrated with rTMS. Journal of Cognitive Neuroscience, 15(3), 315–323.PubMedCrossRefGoogle Scholar
  13. Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? The Quarterly Journal of Experimental Psychology, 61(5), 683–689. Scholar
  14. Horst, A. C., Lier, R., & Steenbergen, B. (2013). Mental rotation strategies reflected in event-related (de) synchronization of alpha and mu power. Psychophysiology, 50(9), 858–863.PubMedCrossRefGoogle Scholar
  15. Hugdahl, K., Thomsen, T., & Ersland, L. (2006). Sex differences in visuo-spatial processing: An fMRI study of mental rotation. Neuropsychologia, 44(9), 1575–1583.PubMedCrossRefGoogle Scholar
  16. Kasabov, N., & Capecci, E. (2015). Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Information Sciences, 294, 565–575.CrossRefGoogle Scholar
  17. Kim, S., Jung, K. H., & Lee, J. H. (2012). Characteristics of alpha power event-related desynchronization in the discrimination of spontaneous deceptive responses. International Journal of Psychophysiology, 85(2), 230–235.PubMedCrossRefGoogle Scholar
  18. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2), 169–195.PubMedCrossRefGoogle Scholar
  19. Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Klimesch, W., Doppelmayr, M., & Hanslmayr, S. (2006). Upper alpha ERD and absolute power: Their meaning for memory performance. Progress in Brain Research, 159, 151–165.PubMedCrossRefGoogle Scholar
  21. Kolev, V., Yordanova, J., Basar-Eroglu, C., & Basar, E. (2002). Age effects on visual EEG responses reveal distinct frontal alpha networks. Clinical Neurophysiology, 113(6), 901–910.PubMedCrossRefGoogle Scholar
  22. Lawrence, L. M., Ciorciari, J., & Kyrios, M. (2014). Cognitive processes associated with compulsive buying behaviours and related EEG coherence. Psychiatry Research: Neuroimaging, 221(1), 97–103.PubMedCrossRefGoogle Scholar
  23. Li, S., Mayhew, S. D., & Kourtzi, Z. (2011). Learning shapes spatiotemporal brain patterns for flexible categorical decisions. Cerebral Cortex, 22(10), 2322–2335.PubMedCrossRefGoogle Scholar
  24. Neubauer, A. C., Bergner, S., & Schatz, M. (2010). Two- vs. three-dimensional presentation of mental rotation tasks: Sex differences and effects of training on performance and brain activation. Intelligence, 38(5), 529–539.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 1004–1023.PubMedCrossRefGoogle Scholar
  26. Neubauer, A. C., Fink, A., & Grabner, R. H. (2006). Sensitivity of alpha band ERD to individual differences in cognition. Progress in Brain Research, 159, 167–178.PubMedCrossRefGoogle Scholar
  27. Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F., & Guthke, J. (2004). Intelligence and individual differences in becoming neurally efficient. Acta Psychologica, 116(1), 55–74.PubMedCrossRefGoogle Scholar
  28. Neuper, C., & Klimesch, W. (Eds.). (2006). Event-related dynamics of brain oscillations (Vol. 159). Amsterdam: Elsevier.Google Scholar
  29. Parsons, T. D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J. G., et al. (2004). Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia, 42(4), 555–562.PubMedCrossRefGoogle Scholar
  30. Pfurtscheller, G. (1989). Spatiotemporal analysis of alpha frequency components with the ERD technique. Brain Topography, 2(1), 3–8.PubMedCrossRefGoogle Scholar
  31. Pfurtscheller, G. (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology, 83(1), 62–69.PubMedCrossRefGoogle Scholar
  32. Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42, 817–826.PubMedCrossRefGoogle Scholar
  33. Riečanský, I., & Katina, S. (2010). Induced EEG alpha oscillations are related to mental rotation ability: The evidence for neural efficiency and serial processing. Neuroscience Letters, 482(2), 133–136.PubMedCrossRefGoogle Scholar
  34. Roberts, J. E., & Bell, M. A. (2000). Sex differences on a mental rotation task: Variations in electroencephalogram hemispheric activation between children and college students. Developmental Neuropsychology, 17(2), 199–223.PubMedCrossRefGoogle Scholar
  35. Rubia, K., Hyde, Z., Halari, R., Giampietro, V., & Smith, A. (2010). Effects of age and sex on developmental neural networks of visual–spatial attention allocation. NeuroImage, 51(2), 817–827.PubMedCrossRefGoogle Scholar
  36. Salenius, S., Kajola, M., Thompson, W. L., Kosslyn, S., & Hari, R. (1995). Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. Electroencephalography and Clinical Neurophysiology, 95(6), 453–462.PubMedCrossRefGoogle Scholar
  37. Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2), 148–155.PubMedCrossRefGoogle Scholar
  38. Sharma, G., Gramann, K., Chandra, S., Singh, V., & Mittal, A. P. (2017). Brain connectivity during encoding and retrieval of spatial information: Individual differences in navigation skills. Brain Informatics, 4(3), 207.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Sharma, G., Salam, A. A., Chandra, S., Singh, V., & Mittal, A. (2016, October). Influence of spatial learning perspectives on navigation through virtual reality environment. Paper presented at the International Conference on Brain and Health Informatics (pp. 346-354). Springer International Publishing.Google Scholar
  40. Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge: MIT Press.Google Scholar
  41. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.PubMedCrossRefGoogle Scholar
  42. Shepard, S., & Metzler, D. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 3.PubMedGoogle Scholar
  43. So, W. K., Wong, S. W., Mak, J. N., & Chan, R. H. (2017). An evaluation of mental workload with frontal EEG. PLoS ONE, 12(4), e0174949.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Tomasino, B., & Gremese, M. (2016). Effects of stimulus type and strategy on mental rotation network: An activation likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 9, 693.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Tomasino, B., & Rumiati, R. I. (2004). Effects of strategies on mental rotation and hemispheric lateralization: Neuropsychological evidence. Journal of Cognitive Neuroscience, 16(5), 878–888.PubMedCrossRefGoogle Scholar
  46. van Hoogmoed, A. H., van den Brink, D., & Janzen, G. (2012). Electrophysiological correlates of object location and object identity processing in spatial scenes. PLoS ONE, 7(7), e41180.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Williams, J. D., Rippon, G., Stone, B. M., & Annett, J. (1995). Psychophysiological correlates of dynamic imagery. British Journal of Psychology, 86(2), 283–300.PubMedCrossRefGoogle Scholar
  48. Xue, J., Li, C., Quan, C., Lu, Y., Yue, J., & Zhang, C. (2017). Uncovering the cognitive processes underlying mental rotation: an eye-movement study. Scientific Reports, 7(1), 10076.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biomedical Engineering Department, Institute of Nuclear Medicine and Allied Science (INMAS)Defence Research and Development Organization (DRDO)DelhiIndia

Personalised recommendations