The Analysis of Electroencephalography Changes Before and After a Single Neurofeedback Alpha/Theta Training Session in University Students

  • Young-Ji Lee
  • Hye-Geum Kim
  • Eun-Jin Cheon
  • Kiseong Kim
  • Joong-Hyeon Choi
  • Ji-Yean Kim
  • Jin-Mi Kim
  • Bon-Hoon KooEmail author


The underlying mechanisms of alpha/theta neurofeedback training have not been fully determined. Therefore, this study aimed to test the changes in the brain state feedback during the alpha/theta training. Twenty-seven healthy participants were trained during a single session of the alpha/theta protocol, and the resting quantitative electroencephalography (QEEG) was assessed before and after training. QEEG was recorded at eight scalp locations (F3, F4, C3, C4, T3, T4, O1, and O2), and the absolute power, relative power, ratio of sensory-motor rhythm beta (SMR) to theta (RST), ratio of SMR-mid beta to theta (RSMT), ratio of mid beta to theta (RMT), ratio of alpha to high beta (RAHB), and scaling exponent of detrended fluctuation analysis by each band were measured. The results indicated a significant increase of absolute alpha power, especially the slow alpha band, at all electrodes except T3 and T4. Moreover, the relative alpha power, especially the slow alpha band, showed a significant increase at all electrodes. The relative theta power showed a significant decrease at all electrodes, except T3. A significant decrease in relative beta power, relative lower beta power and relative mid beta power was observed at O1. RST (at C4, O1, and O2), RSMT and RMT (at F4, C4, O1 and O2), and RAHB (at all electrodes) showed significant increase. Scaling exponents at all electrodes except T3 showed a significant decrease. These findings indicate that a one-time session of alpha/theta training might have the possibility to enhance both vigilance and concentration, thus stabilizing the overall brain function.


Neurofeedback Alpha/theta Quantitative electroencephalography Meditation 



This work was supported by the 2015 Yeungnam University Research Grant.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Abenson, M. H. (1970). EEGs in chronic schizophrenia. British Journal of Psychiatry, 116(533), 421–425.Google Scholar
  2. Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neuroscience Letters, 310(1), 57–60.Google Scholar
  3. Aftanas, L. I., & Golocheikine, S. A. (2002). Non-linear dynamic complexity of the human EEG during meditation. Neuroscience Letters, 330(2), 143–146.Google Scholar
  4. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, DC: American Psychological Association.Google Scholar
  5. Baehr, E., Rosenfeld, J. P., & Baehr, R. (2001). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. Journal of Neurotherapy, 4(4), 11–18.Google Scholar
  6. Banquet, J.-P. (1973). Spectral analysis of the EEG in meditation. Electroencephalography and Clinical Neurophysiology, 35(2), 143–151.Google Scholar
  7. Barnea, A., Rassis, A., & Zaidel, E. (2005). Effect of neurofeedback on hemispheric word recognition. Brain and Cognition, 59(3), 314–321.Google Scholar
  8. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988a). An inventory for measuring clinical anxiety: Psychometric properties. Journal of consulting and clinical Psychology, 56(6), 893.Google Scholar
  9. Beck, A. T., & Steer, R. (1993). Beck anxiety inventory manual. San Antonio, TX: The Psychological Corporation.Google Scholar
  10. Beck, A. T., Steer, R. A., & Carbin, M. G. (1988b). Psychometric properties of the beck depression inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77–100.Google Scholar
  11. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571.Google Scholar
  12. Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211.Google Scholar
  13. Carmody, D. P., Radvanski, D. C., Wadhwani, S., Sabo, M. J., & Vergara, L. (2000). EEG biofeedback training and attention-deficit/hyperactivity disorder in an elementary school setting. Journal of Neurotherapy, 4(3), 5–27.Google Scholar
  14. Choi, H., Lee, H. J., & Lee, H. Y. (2017). The effects of torture-related stressors on long-term complex post-traumatic symptoms in South Korean torture survivors. International Journal of Psychology, 52, 57–66.Google Scholar
  15. Cowan, J., & Allen, T. (2000). Using brainwave biofeedback to train the sequence of concentration and relaxation in athletic activities. Proceedings of 15th Association for the Advancement of Applied Sport Psychology, 95.Google Scholar
  16. Cuevas, C. D. L., Arredondo, M. T., Cabrera, M. F., Sulzenbacher, H., & Meise, U. (2006). Randomized clinical trial of telepsychiatry through videoconference versus face-to-face conventional psychiatric treatment. Telemedicine Journal & e-Health, 12(3), 341–350.Google Scholar
  17. Derogatis, L. R. (1979). Symptom checklist-90-revised (SCL-90-R). Lyndhurst, NJ: NCS Pearson.Google Scholar
  18. Derogatis, L. R. (1992). SCL-90-R: Administration, scoring and procedures manual for the R (evised) version and other instruments of the psychopathology rating scale series. Towson: Clinical Psychometric Research.Google Scholar
  19. Egner, T., & Gruzelier, J. H. (2003). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. Neuroreport, 14(9), 1221–1224.Google Scholar
  20. Egner, T., & Gruzelier, J. H. (2004). The temporal dynamics of electroencephalographic responses to alpha/theta neurofeedback training in healthy subjects. Journal of Neurotherapy, 8(1), 43–57.Google Scholar
  21. Egner, T., Strawson, E., & Gruzelier, J. H. (2002). EEG signature and phenomenology of alpha/theta neurofeedback training versus mock feedback. Applied Psychophysiology and Biofeedback, 27(4), 261–270.Google Scholar
  22. Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., Reyburn, G., Gilbert, G., et al. (2013). Neurofeedback training induces changes in white and gray matter. Clinical EEG and Neuroscience, 44(4), 265–272.Google Scholar
  23. Gifani, P., Rabiee, H., Hashemi, M., Taslimi, P., & Ghanbari, M. (2007). Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification. Journal of the Franklin Institute, 344(3), 212–229.Google Scholar
  24. Globus, G. G., & Arpaia, J. P. (1994). Psychiatry and the new dynamics. Biological Psychiatry, 35(5), 352–364.Google Scholar
  25. Gruzelier, J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cognitive Processing, 10(Suppl 1), S101–S109.Google Scholar
  26. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. II: Creativity, the performing arts and ecological validity. Neuroscience and Biobehavioral Reviews, 44, 142–158.Google Scholar
  27. Gündel, H., Wolf, A., Xidara, V., Busch, R., & Ceballos-Baumann, A. (2001). Social phobia in spasmodic torticollis. Journal of Neurology, Neurosurgery & Psychiatry, 71(4), 499–504.Google Scholar
  28. Hammond, D. C. (2000). Neurofeedback treatment of depression with the Roshi. Journal of Neurotherapy, 4(2), 45–56.Google Scholar
  29. Hammond, D. C. (2005). Neurofeedback with anxiety and affective disorders. Child and Adolescent Psychiatric Clinics of North America, 14(1), 105–123.Google Scholar
  30. Han, H. M., Yum, T. H., Shin, Y. W., Kim, K. H., Yoon, D. J., & Jung, G. J. (1986). The standardized study of the Korean version of beck depression inventory. Journal of Korean Neuropsychiatric Association, 25(3), 487–502.Google Scholar
  31. Hardt, J. V., & Kamiya, J. (1978). Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science, 201(4350), 79–81.Google Scholar
  32. Hirai, T., & Johnston, W. (1974). Psychophysiology of zen. Tokyo: Igaku Shoin.Google Scholar
  33. Imai, R., & Okamoto, Y. (2008). [Detection of mental task-induced changes in EEG patterns by detrended fluctuation analysis (DFA)]. Rinsho Byori. Japanese Journal of Clinical Pathology, 56(5), 383–386.Google Scholar
  34. Jacobs, G. D., & Lubar, J. F. (1989). Spectral analysis of the central nervous system effects of the relaxation response elicited by autogenic training. Behavioral Medicine, 15(3), 125–132.Google Scholar
  35. Jiang, Z., Ning, Y., An, B., Li, A., & Feng, H. (2005). Detecting mental EEG properties using detrended fluctuation analysis. Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2, 2017–2020.Google Scholar
  36. Kasamatsu, A., & Hirai, T. (1966). An electroencephalographic study on the Zen meditation (Zazen). Psychiatry and Clinical Neurosciences, 20(4), 315–336.Google Scholar
  37. Kim, K., Kim, J., & Won, H. (1984). Korean version of Symptom Checklist-90-Revised (SCL-90-R) professional manual: Seoul. Seoul: ChoongAng Aptitude.Google Scholar
  38. Koo, B. H., Jung, E. J., Seo, W. S., Song, C. J., Chang, H. K., & Bai, D. S. (2005). The comparison of MMPI and neuropsychological tests according to degree of subjective symptom complaints in patients with traumatic head injury. Journal of Korean Neuropsychiatric Association, 44(6), 743–753.Google Scholar
  39. Kwon, S.-M. (1992). Differential roles of dysfunctional attitudes and automatic thoughts in depression: An integrated cognitive model of depression. University of Queensland.Google Scholar
  40. Lee, J. M., Kim, D. J., Kim, I. Y., Park, K. S., & Kim, S. I. (2002). Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Computers in Biology and Medicine, 32(1), 37–47.Google Scholar
  41. Lee, J. M., Kim, D. J., Kim, I. Y., Park, K. S., & Kim, S. I. (2004). Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis. Medical Engineering and Physics, 26(9), 773–776.Google Scholar
  42. Lee, J. S., & Koo, B. H. (2012). Fractal analysis of EEG upon auditory stimulation during waking and hypnosis in healthy volunteers. International Journal of Clinical and Experimental Hypnosis, 60(3), 266–285.Google Scholar
  43. Lee, J. S., Spiegel, D., Kim, S. B., Lee, J. H., Kim, S. I., Yang, B. H., et al. (2007a). Fractal analysis of EEG in hypnosis and its relationship with hypnotizability. International Journal of Clinical and Experimental Hypnosis, 55(1), 14–31.Google Scholar
  44. Lee, J. S., Yang, B. H., Lee, J. H., Choi, J. H., Choi, I. G., & Kim, S. B. (2007b). Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls. Clinical Neurophysiology, 118(11), 2489–2496.Google Scholar
  45. Lee, M., Lee, Y., Park, S., Sohn, C., Jung, Y., Hong, S., et al. (1995). A standardization study of beck depression inventory (I): Korean version (K-BDI): Reliability land factor analysis. Korean Journal Psychopathology, 4, 77–95.Google Scholar
  46. Lee, Y. (1991). A study of the reliability and the validity of the BDI, SDS, and MMPI-D scales. Korean Journal of Clinical Psychology, 10, 98–113.Google Scholar
  47. Linden, M., Habib, T., & Radojevic, V. (1996). A controlled study of the effects of EEG biofeedback on cognition and behavior of children with attention deficit disorder and learning disabilities. Biofeedback and Self-Regulation, 21(1), 35–49.Google Scholar
  48. Linkenkaer-Hansen, K., Monto, S., Rytsala, H., Suominen, K., Isometsa, E., & Kahkonen, S. (2005). Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder. Journal of Neuroscience, 25(44), 10131–10137.Google Scholar
  49. Linkenkaer-Hansen, K., Nikulin, V. V., Palva, J. M., Kaila, K., & Ilmoniemi, R. J. (2004). Stimulus-induced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. European Journal of Neuroscience, 19(1), 203–211.Google Scholar
  50. Lubar, J. F. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self Regulation, 16(3), 201–225.Google Scholar
  51. Monastra, V. J., Monastra, D. M., & George, S. (2002). The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. Applied Psychophysiology and Biofeedback, 27(4), 231–249.Google Scholar
  52. Nikulin, V. V., & Brismar, T. (2004). Long-range temporal correlations in alpha and beta oscillations: Effect of arousal level and test-retest reliability. Clinical Neurophysiology, 115(8), 1896–1908.Google Scholar
  53. Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686.Google Scholar
  54. Park, D.-H., & Shin, C.-J. (2012). Application of detrended fluctuation analysis of electroencephalography during sleep onset period. Korean Journal of Biological Psychiatry. 19(1), 58–62.Google Scholar
  55. Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5(1), 82–87.Google Scholar
  56. Peniston, E. G., & Kulkosky, P. J. (1990). Alcoholic personality and alpha-theta brainwave training. Medical Psychotherapy, 3, 37–55.Google Scholar
  57. Peniston, E. G., & Kulkosky, P. J. (1991). Alpha-theta brainwave neurofeedback for Vietnam veterans with combat-related post-traumatic stress disorder. Medical Psychotherapy, 4(1), 47–60.Google Scholar
  58. Raymond, J., Varney, C., Parkinson, L. A., & Gruzelier, J. H. (2005). The effects of alpha/theta neurofeedback on personality and mood. Cognitive Brain Research, 23(2), 287–292.Google Scholar
  59. Rhee, M. (1995). A standardization study of Beck Depression Inventory; Korean version (K-BDI): Validity. Korean Journal Psychopathology, 4, 96–104.Google Scholar
  60. Ros, T., Théberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., et al. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage, 65, 324–335.Google Scholar
  61. Rosenfeld, J. P., Cha, G., Blair, T., & Gotlib, I. H. (1995). Operant (biofeedback) control of left-right frontal alpha power differences: Potential neurotherapy for affective disorders. Biofeedback and Self-Regulation, 20(3), 241–258.Google Scholar
  62. Rossiter, D. T. R., & La Vaque, T. J. (1995). A comparison of EEG biofeedback and psychostimulants in treating attention deficit/hyperactivity disorders. Journal of Neurotherapy, 1(1), 48–59.Google Scholar
  63. Schabus, M., Griessenberger, H., Gnjezda, M. T., Heib, D. P. J., Wislowska, M., & Hoedlmoser, K. (2017). Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain, 140(4), 1041–1052.Google Scholar
  64. Schmitz, N., Hartkamp, N., & Franke, G. H. (2000). Assessing clinically significant change: Application to the SCL-90-R. Psychological Reports, 86(1), 263–274.Google Scholar
  65. Schutze, M. D., & Junghanns, K. (2015). The difficulty of staying awake during alpha/theta neurofeedback training. Applied Psychophysiology and Biofeedback, 40(2), 85–94.Google Scholar
  66. Sokhadze, T. M., Cannon, R. L., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy and recommendations for further research. Journal of Neurotherapy, 12(1), 5–43.Google Scholar
  67. Stam, C. J., Montez, T., Jones, B. F., Rombouts, S. A., van der Made, Y., Pijnenburg, Y. A., et al. (2005). Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clinical Neurophysiology, 116(3), 708–715.Google Scholar
  68. Sterman, M. (1977). Sensorimotor EEG operant conditioning: Experimental and clinical effects. The Pavlovian Journal of Biological Science: Official Journal of the Pavlovian, 12(2), 63–92.Google Scholar
  69. Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation, 21(1), 3–33.Google Scholar
  70. Taneli, B., & Krahne, W. (1987). EEG changes of transcendental meditation practitioners. Advances in Biological Psychiatry, 16, 41–71Google Scholar
  71. Tonner, P. H., & Bein, B. (2006). Classic electroencephalographic parameters: Median frequency, spectral edge frequency etc. Best Practice & Research: Clinical Anaesthesiology, 20(1), 147–159.Google Scholar
  72. Vaitl, D., Birbaumer, N., Gruzelier, J., Jamieson, G. A., Kotchoubey, B., Kubler, A., et al. (2005). Psychobiology of altered states of consciousness. Psychological Bulletin, 131(1), 98–127.Google Scholar
  73. Valencia, M., Artieda, J., Alegre, M., & Maza, D. (2008). Influence of filters in the detrended fluctuation analysis of digital electroencephalographic data. Journal of Neuroscience Methods, 170(2), 310–316.Google Scholar
  74. Woyshville, M. J., & Calabrese, J. R. (1994). Quantification of occipital EEG changes in Alzheimer’s disease utilizing a new metric: The fractal dimension. Biological Psychiatry, 35(6), 381–387.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychiatryGyeongsang National University Changwon HospitalChangwon-siRepublic of Korea
  2. 2.Department of PsychiatryYeungnam University College of Medicine, Yeungnam University Medical CenterDaeguRepublic of Korea
  3. 3.Department of Bio and Brain EngineeringKAISTDaejeonRepublic of Korea
  4. 4.Department of NeurologyHaeundae Paik Hospital, Inje UniversityBusanRepublic of Korea
  5. 5.Department of PsychologyYeungnam University College of Medicine, Yeungnam University Medical CenterDaeguRepublic of Korea
  6. 6.The Graduate School of Public Health and Social WelfareKyungil UniversityGyeongsan-siRepublic of Korea

Personalised recommendations