Applied Psychophysiology and Biofeedback

, Volume 44, Issue 1, pp 41–49 | Cite as

Neurofeedback Improves Memory and Peak Alpha Frequency in Individuals with Mild Cognitive Impairment

  • Yotam LavyEmail author
  • Tzvi Dwolatzky
  • Zeev Kaplan
  • Jonathan Guez
  • Doron Todder


Mild cognitive impairment (MCI) is a syndrome characterized by a decrease in cognitive abilities, while daily function is maintained. This condition, which is associated with an increased risk for the development of Alzheimer’s disease, has no known definitive treatment at present. In this open-label pilot study we explored the possible benefits of neurofeedback for subjects with MCI. Eleven participants diagnosed with MCI were trained to increase the power of their individual upper alpha band of the electroencephalogram (EEG) signal over the central parietal region. This was achieved using an EEG-based neurofeedback training protocol. Training comprised ten 30-min sessions delivered over 5 weeks. Cognitive and electroencephalographic assessments were conducted before and after training and at 30 days following the last training session. A dose-dependent increase in peak alpha frequency was observed throughout the period of training. Memory performance also improved significantly following training, and this improvement was maintained at 30-day follow-up, while peak alpha frequency returned to baseline at this evaluation. Our findings suggest that neurofeedback may improve memory performance in subjects with mild cognitive impairment, and this benefit may be maintained beyond the training period.


Mild cognitive impairment Mild neurocognitive disorder Neurofeedback Memory Electroencephalography Peak alpha frequency 



Mild cognitive impairment


Alzheimer’s disease




Peak alpha frequency


Individual alpha frequency


Follow up


Central nervous system


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, 5th Edition. Philadelphia, American Psychiatric Association. Scholar
  2. Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., & Kounios, J. (2007). EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical Neuropsychologist, 21(1), 110–129. Scholar
  3. Babiloni, C., Frisoni, G. B., Pievani, M., Vecchio, F., Lizio, R., Buttiglione, M., & Rossini, P. M. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. NeuroImage, 44(1), 123–135. Scholar
  4. Babiloni, C., Vecchio, F., Lizio, R., Ferri, R., Rodriguez, G., Marzano, N., & Rossini, P. M. (2011). Resting state cortical rhythms in mild cognitive impairment and Alzheimer’s disease: Electroencephalographic evidence. Journal of Alzheimer’s Disease: JAD, 26(Suppl 3), 201–214. Scholar
  5. Becerra, J., Fernández, T., Roca-Stappung, M., Díaz-Comas, L., Galán, L., Bosch, J., & Harmony, T. (2012). Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder. Journal of Alzheimer’s Disease: JAD, 28(2), 357–367. Scholar
  6. Berman, M. H., & Frederick, J. A. (2009). Efficacy of neurofeedback for executive and memory function in dementia. Alzheimer’s & Dementia, 5(4), e8. Scholar
  7. Bink, M., Bongers, I. L., Popma, A., Janssen, T. W. P., & van Nieuwenhuizen, C. (2016). 1-year follow-up of neurofeedback treatment in adolescents with attention-deficit hyperactivity disorder: Randomised controlled trial. British Journal of Psychiatry Open, 2(2), 107–115. Scholar
  8. Boyle, P. A., Wilson, R. S., Aggarwal, N. T., Tang, Y., & Bennett, D. A. (2006). Mild cognitive impairment: Risk of Alzheimer disease and rate of cognitive decline. Neurology, 67(3), 441–445. Scholar
  9. Brodaty, H., Connors, M. H., Ames, D., & Woodward, M. (2014). Progression from mild cognitive impairment to dementia: A 3-year longitudinal study. The Australian and New Zealand Journal of Psychiatry. Scholar
  10. Cummins, T. D. R., Broughton, M., & Finnigan, S. (2008). Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 70(1), 75–81. Scholar
  11. Drago, V., Babiloni, C., Bartrés-Faz, D., Caroli, A., Bosch, B., Hensch, T., & Frisoni, G. B. (2011). Disease tracking markers for Alzheimer’s disease at the prodromal (MCI) stage. Journal of Alzheimer’s Disease: JAD, 26(Suppl 3), 159–199. Scholar
  12. Dwolatzky, T., Whitehead, V., Doniger, G. M., Simon, E. S., Schweiger, A., Jaffe, D., & Chertkow, H. (2004). Validity of the Mindstreams computerized cognitive battery for mild cognitive impairment. Journal of Molecular Neuroscience: MN, 24(1), 33–44. Retrieved from
  13. Egner, T., & Sterman, M. B. (2006). Neurofeedback treatment of epilepsy: from basic rationale to practical application. Expert Review of Neurotherapeutics, 6, 247–257. Scholar
  14. Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2011, 2327–2330.
  15. Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., Reyburn, G., Gilbert, G., & Beauregard, M. (2013). Neurofeedback training induces changes in white and gray matter. Clinical EEG and Neuroscience: Official Journal of the EEG and Clinical Neuroscience Society (ENCS), 44(4), 265–272. Scholar
  16. Gilbert, J. G., & Levee, R. F. (1971). Patterns of declining memory. Journal of Gerontology, 26(1), 70–75. Scholar
  17. Goldman, R. I., Stern, J. M., Engel, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487–2492. Scholar
  18. Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296. Scholar
  19. Huang, C., Wahlund, L.-O., Dierks, T., Julin, P., Winblad, B., & Jelic, V. (2000). Discrimination of Alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: A cross-sectional and longitudinal study. Clinical Neurophysiology, 111(11), 1961–1967. Scholar
  20. Iaccarino, L., Chiotis, K., Alongi, P., Almkvist, O., Wall, A., Cerami, C., & Perani, D. (2017). A cross-validation of FDG- and amyloid-PET biomarkers in mild cognitive impairment for the risk prediction to dementia due to Alzheimer’s Disease in a clinical setting. Journal of Alzheimer’s Disease, 59(2), 603–614. Scholar
  21. Jack, C. R., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52(7), 1397–1397. Scholar
  22. Jack, C. R., Shiung, M. M., Weigand, S. D., O’Brien, P. C., Gunter, J. L., Boeve, B. F., & Petersen, R. C. (2005). Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology, 65(8), 1227–1231. Scholar
  23. Jelic, V., Johansson, S.-E., Almkvist, O., Shigeta, M., Julin, P., Nordberg, A., & Wahlund, L.-O. (2000). Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiology of Aging, 21(4), 533–540. Scholar
  24. Karakaya, T., Fußer, F., Schroder, J., & Pantel, J. (2013). Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer’s disease. Current Neuropharmacology, 11(1), 102–108. Scholar
  25. Karas, G. B., Scheltens, P., Rombouts, S. A. R. B., Visser, P. J., van Schijndel, R. A., Fox, N. C., & Barkhof, F. (2004). Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 23(2), 708–716. Scholar
  26. Katzir, M., Eyal, T., Meiran, N., & Kessler, Y. (2010). Imagined positive emotions and inhibitory control: The differentiated effect of pride versus happiness. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(5), 1314–1320. Scholar
  27. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195. Scholar
  28. Kouijzer, M. E. J., de Moor, J. M. H., Gerrits, B. J. L., Buitelaar, J. K., & van Schie, H. T. (2009). Long-term effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3(2), 496–501. Scholar
  29. LaVaque, T. J., Hammond, D. C., Trudeau, D., Monastra, V. J., Perry, J., Lehrer, P., et al. (2002). Template for developing guidelines for the evaluation of the clinical efficacy of psychophysiological interventions. Applied Psychophysiology and Biofeedback, 27, 273–281. Scholar
  30. Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. Scholar
  31. Mirsky, J. B., Heuer, H. W., Jafari, A., Kramer, J. H., Schenk, A. K., Viskontas, I. V., & Boxer, A. L. (2011). Anti-saccade performance predicts executive function and brain structure in normal elders. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 24(2), 50–58. Scholar
  32. Miyake, a, Friedman, N. P., Emerson, M. J., Witzki, a H., Howerter, a, & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. Scholar
  33. Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., & Villringer, A. (2003). Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage, 20(1), 145–158. Scholar
  34. Moretti, D. V., Paternicò, D., Binetti, G., Zanetti, O., & Frisoni, G. B. (2012a). EEG markers are associated to gray matter changes in thalamus and basal ganglia in subjects with mild cognitive impairment. NeuroImage, 60(1), 489–496. Scholar
  35. Moretti, D. V., Prestia, A, Fracassi, C., Binetti, G., Zanetti, O., & Frisoni, G. B. (2012b). Specific EEG changes associated with atrophy of hippocampus in subjects with mild cognitive impairment and Alzheimer’s disease. International Journal of Alzheimer’s Disease. Scholar
  36. Moretti, D. V., Prestia, A, Fracassi, C., Geroldi, C., Binetti, G., Rossini, P. M., & Frisoni, G. B. (2011). Volumetric differences in mapped hippocampal regions correlate with increase of high alpha rhythm in Alzheimer’s disease. International Journal of Alzheimer’s Disease. Scholar
  37. Mufson, E. J., Binder, L., Counts, S. E., DeKosky, S. T., de Toledo-Morrell, L., Ginsberg, S. D., & Scheff, S. W. (2012). Mild cognitive impairment: Pathology and mechanisms. Acta Neuropathologica, 123(1), 13–30. Scholar
  38. Naveh-Benjamin, M., Guez, J., & Shulman, S. (2004). Older adults’ associative deficit in episodic memory: Assessing the role of decline in attentional resources. Psychonomic Bulletin & Review, 11(6), 1067–1073. Scholar
  39. Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. P. (2011). Age-related trends in saccade characteristics among the elderly. Neurobiology of Aging, 32(4), 669–679. Scholar
  40. Petersen, R. C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214–228. Scholar
  41. Schreckenberger, M., Lange-Asschenfeldt, C., Lange-Asschenfeld, C., Lochmann, M., Mann, K., Siessmeier, T., & Gründer, G. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: A combined PET/EEG study with lorazepam challenge in humans. NeuroImage, 22(2), 637–644. Scholar
  42. Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. Scholar
  43. Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118, e1530–e1540. Scholar
  44. Surmeli, T., Eralp, E., Mustafazade, I., Kos, H., Özer, G. E., & Surmeli, O. H. (2015). Quantitative EEG neurometric analysis—guided neurofeedback treatment in dementia 20 cases. How neurometric analysis is important for the treatment of dementia and as a biomarker? Clinical EEG and Neuroscience. Scholar
  45. Vemuri, P., Wiste, H. J., Weigand, S. D., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., & Jack, C. R. (2009). MRI and CSF biomarkers in normal, MCI, and AD subjects: Diagnostic discrimination and cognitive correlations. Neurology, 73(4), 287–293. Scholar
  46. Wang, J.-R., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 124(12), 2406–2420. Scholar
  47. Wolf, H., Hensel, A., Kruggel, F., Riedel-Heller, S. G., Arendt, T., Wahlund, L.-O., & Gertz, H.-J. (2004). Structural correlates of mild cognitive impairment. Neurobiology of Aging, 25(7), 913–924. Scholar
  48. Yucha, C., & Gilbert, C. (2004). Evidence-based practice in biofeedback and neurofeedback. Retrieved May 4, 2016, from
  49. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beer-Sheva Mental Health Center, Ministry of Health, and Faculty of Health SciencesBen-Gurion University of the NegevBeer ShevaIsrael
  2. 2.Rambam Health Care Campus and Rappaport Faculty of MedicineTechnion - Israel Institute of TechnologyHaifaIsrael
  3. 3.Department of PsychologyAchva Academic CollegeShikmimIsrael

Personalised recommendations