Applied Psychophysiology and Biofeedback

, Volume 43, Issue 1, pp 57–73 | Cite as

Heart Rate Variability Biofeedback Does Not Substitute for Asthma Steroid Controller Medication

  • Paul M. Lehrer
  • Charles G. Irvin
  • Shou-En Lu
  • Anthony Scardella
  • Beatrix Roehmheld-Hamm
  • Milisyaris Aviles-Velez
  • Jessica Graves
  • Evgeny G. Vaschillo
  • Bronya Vaschillo
  • Flavia Hoyte
  • Harold Nelson
  • Frederick S. Wamboldt


Despite previous findings of therapeutic effects for heart rate variability biofeedback (HRVB) on asthma, it is not known whether HRVB can substitute either for controller or rescue medication, or whether it affects airway inflammation. Sixty-eight paid volunteer steroid naïve study participants with mild or moderate asthma were given 3 months of HRVB or a comparison condition consisting of EEG alpha biofeedback with relaxing music and relaxed paced breathing (EEG+), in a two-center trial. All participants received a month of intensive asthma education prior to randomization. Both treatment conditions produced similar significant improvements on the methacholine challenge test (MCT), asthma symptoms, and asthma quality of life (AQOL). MCT effects were of similar size to those of enhanced placebo procedures reported elsewhere, and were 65% of those of a course of a high-potency inhaled steroid budesonide given to a sub-group of participants following biofeedback training. Exhaled nitric oxide decreased significantly only in the HRVB group, 81% of the budesonide effect, but with no significant differences between groups. Participants reported becoming more relaxed during practice of both techniques. Administration of albuterol after biofeedback sessions produced a large improvement in pulmonary function test results, indicating that neither treatment normalized pulmonary function as a potent controller medication would have done. Impulse oscillometry showed increased upper airway (vocal cord) resistance during biofeedback periods in both groups. These data suggest that HRVB should not be considered an alternative to asthma controller medications (e.g., inhaled steroids), although both biofeedback conditions produced some beneficial effects, warranting further research, and suggesting potential complementary effects. Various hypotheses are presented to explain why HRVB effects on asthma appeared smaller in this study than in earlier studies. Clinical Trial Registration NCT02766374.



Asthma Control Test


Juniper’s Asthma Quality of Life Questionnaire with Standardized Activities


A forced oscillation measure of lung reactance


The comparison condition, comprising EEG biofeedback, relaxing music, and relaxed paced breathing at ~ 15 breaths/min


Episodes of poor asthma control


Exhaled nitric oxide


Quantity of air exhaled in the first second of a forced expiratory maneuver from maximum vital capacity


Total air exhaled in a forced expiratory maneuver from maximum vital capacity


Generalized estimating equation


Heart rate variability


Heart rate variability biofeedback


Inhaled corticosteroids


Impulse oscillometry system

LS mean

Least square mean


Methacholine challenge test


National Jewish Health


The dose of methacholine at which a 20% decrease in FEV1 occurs


Peak expiratory flow during a forced airway maneuver


Respiratory sinus arrhythmia


Robert Wood Johnson Medical School



This research was funded by National Institutes of Health – National Heart Lung and Blood Institute Grant #R01 HL089495, and at the National Jewish site was supported by NIH/NCATS Colorado CTSI Grant Number UL1 TR001082. Contents are the sole responsibility of the authors and do not necessarily represent official NIH views. The study was approved by the institutional review boards of Rutgers Robert Wood Johnson Medical School # 0220080228 and National Jewish Health # 17604.

Compliance with Ethical Standards

Conflict of interest

No author has a financial conflict of interest with material in this paper.


  1. Aboussafy, D., Campbell, T. S., Lavoie, K., Aboud, F. E., & Ditto, B. (2005). Airflow and autonomic responses to stress and relaxation in asthma: The impact of stressor type. International Journal of Psychophysiology, 57(3), 195–201.CrossRefPubMedGoogle Scholar
  2. Alving, K., Weitzberg, E., & Lundberg, J. M. (1993). Increased amount of nitric oxide in exhaled air of asthmatics. European Respiratory Journal, 6, 1368–1370.PubMedGoogle Scholar
  3. Barnes, P. J., & Liew, F. Y. (1995). Nitric oxide and asthmatic inflammation. Immunology Today, 16(3), 128–130.CrossRefPubMedGoogle Scholar
  4. Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufman, P. G., Malik, M., … van der Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.CrossRefPubMedGoogle Scholar
  5. Beydon, N., Davis, S. D., Lombardi, E., Allen, J. L., Arets, H. G., & Aurora, P. (2007). Young children pulmonary function. An official American Thoracic Society/European Respiratory Society statement: Pulmonary function testing in preschool children. American Journal of Respiratory & Critical Care Medicine, 175(12), 1304–1345. T.CrossRefGoogle Scholar
  6. Brusasco, V., & Crimi, E. (2001). Methacholine provocation test for diagnosis of allergic respiratory diseases. Allergy, 56(12), 1114–1120.CrossRefPubMedGoogle Scholar
  7. Brusasco, V., Crimi, E., & Pellegrino, R. (1998). Airway hyperresponsiveness in asthma: Not just a matter of airway inflammation. Thorax, 53(11), 992–998.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crapo, R. O., Casaburi, R., Coates, A. L., Enright, P. L., Hankinson, J. L., Irvin, C. G., … Sterk, P. J. (2000). Guidelines for methacholine and exercise challenge testing-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. American Journal of Respiratory & Critical Care Medicine, 161(1), 309–329.CrossRefGoogle Scholar
  9. Davis, B. E., & Cockcroft, D. W. (2012). Past, present and future uses of methacholine testing. Expert Review of Respiratory Medicine, 6(3), 321–329.CrossRefPubMedGoogle Scholar
  10. Deviliya, G. J., & Borkovec, T. D. (2000). Psychometric properties of the credibility/expectancy questionnaire. Journal of Behavior Therapy & Experimental Psychiatry, 31(2), 73–86.CrossRefGoogle Scholar
  11. Deykin, A., Massaro, A. F., Drazen, J. M., & Israel, E. (2002). Exhaled nitric oxide as a diagnostic test for asthma: Online versus offline techniques and effect of flow rate. American Journal of Respiratory & Critical Care Medicine, 165(12), 1597–1601.CrossRefGoogle Scholar
  12. Eckberg, D. L., & Sleight, P. (1992). Human baroreflexes in health and disease. Gloustershire: Clarendon Press.Google Scholar
  13. Feldman, J. M., Lehrer, P. M., Hochron, S. M., & Schwartz, G. E. (2002). Defensiveness and individual response stereotypy in asthma. Psychosomatic Medicine, 64(2), 294–301.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fonseca, J. A., Costa-Pereira, A., Delgado, L., Silva, L. N., Magalhaes, M., Castel-Branco, M. G., & Vaz, M. (2005). Pulmonary function electronic monitoring devices: A randomized agreement study. Chest, 128(3), 1258–1265.CrossRefPubMedGoogle Scholar
  15. Freitas, D. A., Holloway, E. A., Bruno, S. S., Chaves, G. S., Fregonezi, G. A., & Mendonca, K. P. (2013). Breathing exercises for adults with asthma. Cochrane Database of Systematic Reviews. doi: 10.1002/14651858.CD001277.pub3 Google Scholar
  16. Grrishma, B., Gaur, G. S., Velkumary, S., Subramanian, S. K., & Gurunandan, U. (2015). Assessment of cardiovascular autonomic functions and baroreceptor reactivity in women with premenstrual syndrome. Indian Journal of Physiology & Pharmacology, 59(2), 148–154.Google Scholar
  17. Guo, Z., Wang, Y., Xing, G., & Wang, X. (2016). Diagnostic accuracy of fractional exhaled nitric oxide in asthma: A systematic review and meta-analysis of prospective studies. Journal of Asthma, 53(4), 404–412.CrossRefPubMedGoogle Scholar
  18. Hafez, M. R., Abu-Bakr, S. M., & Mohamed, A. A. (2015). Forced oscillometry track sites of airway obstruction in bronchial asthma. Annals of Allergy, Asthma, & Immunology, 115(1), 28–32.CrossRefGoogle Scholar
  19. Hewitt, D. J. (2008). Interpretation of the “positive” methacholine challenge. American Journal of Industrial Medicine, 51(10), 769–781.CrossRefPubMedGoogle Scholar
  20. Hoyte, F. C. L. (2013). Vocal cord dysfunction. Immunology and Allergy Clinics of North America, 33(1), 1–22.CrossRefPubMedGoogle Scholar
  21. Irvin, C. G., Martin, R. J., Chinchilli, V. M., Kunselman, S. J., & Cherniack, R. M. (1997). Quality control of peak flow meters for multicenter clinical trials. The asthma clinical research network (ACRN). American Journal of Respiratory & Critical Care Medicine, 156(2 Pt 1), 396–402.CrossRefGoogle Scholar
  22. Isenberg, S. A., Lehrer, P. M., & Hochron, S. (1992). The effects of suggestion and emotional arousal on pulmonary function in asthma: A review and a hypothesis regarding vagal mediation. Psychosomatic Medicine, 54(2), 192–216.CrossRefPubMedGoogle Scholar
  23. James, A., & Ryan, G. (1997). Testing airway responsiveness using inhaled methacholine or histamine. Respirology, 2(2), 97–105.CrossRefPubMedGoogle Scholar
  24. Jatakanon, A., Kharitonov, S., Lim, S., & Barnes, P. J. (1999). Effect of differing doses of inhaled budesonide on markers of airway inflammation in patients with mild asthma. Thorax, 54(2), 108–114.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M., & Johnson, P. (1992). Alternate cardiovascular baseline assessment techniques: Vanilla or resting baseline. Psychophysiology, 29(6), 742–750.CrossRefPubMedGoogle Scholar
  26. Jonasson, G., Carlsen, K. H., Jonasson, C., & Mowinckel, P. (2000). Low-dose inhaled budesonide once or twice daily for 27 months in children with mild asthma. Allergy, 55(8), 740–748.CrossRefPubMedGoogle Scholar
  27. Juniper, E. F., Buist, A. S., Cox, F. M., Ferrie, P. J., & King, D. R. (1999). Validation of a standardized version of the asthma quality of life questionnaire. Chest, 115, 1265–1270.CrossRefPubMedGoogle Scholar
  28. Juniper, E. F., Guyatt, G. H., Ferrie, P. J., & Griffith, L. E. (1993). Measuring quality of life in asthma. American Review of Respiratory Disease, 147(4), 832–838.CrossRefPubMedGoogle Scholar
  29. Kemeny, M. E., Rosenwasser, L. J., Panettieri, R. A., Rose, R. M., Berg-Smith, S. M., & Kline, J. N. (2007). Placebo response in asthma: A robust and objective phenomenon. Journal of Allergy & Clinical Immunology, 119(6), 1375–1381.CrossRefGoogle Scholar
  30. Langmack, E. L. (2001). Complimentary and alternative therapies for asthma. In S. J. Szefler & D.Y.M. Leung (Eds.), Severe asthma, pathogenesis and clinical management (2nd edn., pp. 221–238). New York: Marcel Dekker.CrossRefGoogle Scholar
  31. Lehrer, P. M. (2012). Biofeedback therapy for asthma. In R. Anbar (Ed.), Functional respiratory disorders. New York: Springer.Google Scholar
  32. Lehrer, P. M., Hochron, S. M., Mayne, T., Isenberg, S., Carlson, V., Lasoski, A. M., … Rausch, L. (1994). Relaxation and music therapies for asthma among patients prestabilized on asthma medication. Journal of Behavioral Medicine, 17(1), 1–24.CrossRefPubMedGoogle Scholar
  33. Lehrer, P. M., Hochron, S. M., Mayne, T., Isenberg, S., Lasoski, A. M., Carlson, V., … Porges, S. (1997). Relationship between changes in EMG and respiratory sinus arrhythmia in a study of relaxation therapy for asthma. Applied Psychophysiology and Biofeedback, 22(3), 183–191.CrossRefPubMedGoogle Scholar
  34. Lehrer, P. M., Hochron, S. M., McCann, B., Swartzman, L., & Reba, P. (1986). Relaxation decreases large-airway but not small-airway asthma. Journal of Psychosomatic Research, 30(1), 13–25.CrossRefPubMedGoogle Scholar
  35. Lehrer, P. M., Vaschillo, B., Zucker, T., Graves, J., Katsamanis, M., Aviles, M., & Wamboldt, F. S. (2013). Protocol for heart rate variability biofeedback training. Biofeedback, 41(3), 98–109.CrossRefGoogle Scholar
  36. Lehrer, P. M., Vaschillo, E. G., Vaschillo, B., Lu, S.-E., Eckberg, D. L., Edelberg, R., … Hamer, R. M. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65(5), 796–805.CrossRefPubMedGoogle Scholar
  37. Lehrer, P. M., Vaschillo, E. G., Vaschillo, B., Lu, S.-E., Scardella, A., Siddique, M., & Habib, R. H. (2004). Biofeedback treatment for asthma. Chest, 126(2), 352–361.CrossRefPubMedGoogle Scholar
  38. Malmberg, L. P., Pelkonen, A. S., Haahtela, T., & Turpeinen, M. (2003). Exhaled nitric oxide rather than lung function distinguishes preschool children with probable asthma. Thorax, 58, 494–499.CrossRefPubMedPubMedCentralGoogle Scholar
  39. McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2001). Generalized, linear, and mixed models. New York: Wiley.Google Scholar
  40. Milgrom, H., Bender, B. G., Ackerson, L., Bowry, P., Smith, B., & Rand, C. (1996). Noncompliance and treatment failure in children with asthma. Journal of Allergy and Clinical Immunology, 98, 1051–1057.CrossRefPubMedGoogle Scholar
  41. Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A. ... Force, A. E. T. (2005). Standardisation of spirometry. European Respiratory Journal, 26(2), 319–338.CrossRefPubMedGoogle Scholar
  42. Nathan, R. A., Sorkness, C. A., Kosinski, M., Schatz, M., Li, J. T., Marcus, P., … Pendergraft, T. B. (2004). Development of the asthma control test: a survey for assessing asthma control. Journal of Allergy & Clinical Immunology, 113(1), 59–65.CrossRefGoogle Scholar
  43. National Heart Lung and Blood Institute (NHLBI). (2007). Expert panel report 3: Guidelines for the diagnosis and management of asthma: Full report. Washington, DC: National Asthma Education and Prevention Program, Department of Health and Human Services.Google Scholar
  44. Pavlov, V. A., & Tracey, K. J. (2006). Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochemical Society Transactions, 34(Pt 6), 1037–1040.CrossRefPubMedGoogle Scholar
  45. Porges, S. W. (1995). Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32, 301–318.CrossRefPubMedGoogle Scholar
  46. Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42, 123–146.CrossRefPubMedGoogle Scholar
  47. Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116–143.CrossRefPubMedGoogle Scholar
  48. Rowe, B. H., & Oxman, A. D. (1993). Performance of an asthma quality of life questionnaire in an outpatient setting. American Review of Respiratory Disease, 148(3), 675–681.CrossRefPubMedGoogle Scholar
  49. Schatz, M., Mosen, D. M., Kosinski, M., Vollmer, W. M., Magid, D. J., O’Connor, E., & Zeiger, R. S. (2007). Validity of the asthma control test completed at home. American Journal of Managed Care, 13(12), 661–667.PubMedGoogle Scholar
  50. Schatz, M., Sorkness, C. A., Li, J. T., Marcus, P., Murray, J. J., Nathan, R. A., … Jhingran, P. (2006). Asthma Control Test: Reliability, validity, and responsiveness in patients not previously followed by asthma specialists. Journal of Allergy & Clinical Immunology, 117(3), 549–556.CrossRefGoogle Scholar
  51. Sheffer, A. L., & Taggart, V. S. (1993). The National asthma education program. Expert panel report guidelines for the diagnosis and management of asthma. National Heart, Lung, and Blood Institute. Medical Care, 31(3 Suppl), MS20-28.Google Scholar
  52. Silkoff, P. E., Stevens, A., Pak, J., Bucher-Bartelson, B., & Martin, R. J. (1999). A method for the standardized offline collection of exhaled nitric oxide. Chest, 116(3), 754–759.CrossRefPubMedGoogle Scholar
  53. Smith, J. C. (2001). Advances in ABC relaxation theory: The 14 + 1 map advances in ABC relaxation: Applications and inventories (pp. 3–32). New York, NY: Springer.Google Scholar
  54. Smith, L. J., Kalhan, R., Wise, R. A., Sugar, E. A., Lima, J. J., & Irvin, C. G. … American Lung Association Asthma Clinical Research, C. (2015). Effect of a soy isoflavone supplement on lung function and clinical outcomes in patients with poorly controlled asthma: a randomized clinical trial. JAMA: The journal of the American Medical Association, 313(20), 2033–2043.CrossRefPubMedGoogle Scholar
  55. Song, H.-S., & Lehrer, P. M. (2003). The effects of specific respiratory rates on heart rate and heart rate variability. Applied Psychophysiology & Biofeedback, 28(1), 13–23.CrossRefGoogle Scholar
  56. Strunk, R. C., Ford, J. G., & Taggart, V. (2002). Reducing disparities in asthma care: Priorities for research–National Heart, Lung, and Blood Institute workshop report. Journal of Allergy and Clinical Immunology, 109, 229–237.CrossRefPubMedGoogle Scholar
  57. Van Buren, T., Kasbergen, C. M., Gispen, W. H., & De Wildt, D. J. (1998). In vivo cardiovascular reactivity and baroreflex activity in diabetic rats. Cardiovascular Research, 38(3), 763–771.CrossRefPubMedGoogle Scholar
  58. Vaschillo, E. G., Lehrer, P. M., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: a preliminary study of resonance in the cardiovascular system. Applied Psychophysiology & Biofeedback, 27(1), 1–27.CrossRefGoogle Scholar
  59. Vaschillo, E. G., Vaschillo, B., & Lehrer, P. M. (2006). Characteristics of resonance in heart rate variability stimulated by biofeedback. Applied Psychophysiology & Biofeedback, 31(2), 129–142.CrossRefGoogle Scholar
  60. Wamboldt, F. S., & Balkissoon, R. C. (2008). Vocal cord dysfunction. In M. Castro & M. Kraft (Eds.), Clinical asthma (pp. 345–350). Philadelphia: Elsevier.CrossRefGoogle Scholar
  61. Williams, L. K., Pladevall, M., Xi, H., Peterson, E. L., Joseph, C., Lafata, J. E., Ownby, D. R., & Johnson, C. C. (2004). Relationship between adherence to inhaled corticosteroids and poor outcomes among adults with asthma. Journal of Allergy and Clinical Immunology, 114, 1288–1293.CrossRefPubMedGoogle Scholar
  62. Wise, R. A., Bartlett, S. J., Brown, E. D., Castro, M., Cohen, R., & Holbrook, J. T. … American Lung Association Asthma Clinical Research, C. (2009). Randomized trial of the effect of drug presentation on asthma outcomes: the American Lung Association Asthma Clinical Research Centers. Journal of Allergy & Clinical Immunology, 124(3), 436–444.CrossRefGoogle Scholar
  63. World Health Organization. (2003). Adherence to long-term therapies: Evidence for action. Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Paul M. Lehrer
    • 1
  • Charles G. Irvin
    • 3
  • Shou-En Lu
    • 4
  • Anthony Scardella
    • 1
  • Beatrix Roehmheld-Hamm
    • 1
  • Milisyaris Aviles-Velez
    • 1
  • Jessica Graves
    • 6
  • Evgeny G. Vaschillo
    • 5
  • Bronya Vaschillo
    • 5
  • Flavia Hoyte
    • 2
    • 6
  • Harold Nelson
    • 2
    • 6
  • Frederick S. Wamboldt
    • 2
    • 6
  1. 1.Department of PsychiatryRutgers – Robert Wood Johnson Medical SchoolPiscatawayUSA
  2. 2.University of Colorado School of MedicineAuroraUSA
  3. 3.University of Vermont, Larner College of MedicineBurlingtonUSA
  4. 4.Rutgers School of Public HealthPiscatawayUSA
  5. 5.Rutgers, The State University of New JerseyPiscatawayUSA
  6. 6.National Jewish HealthDenverUSA

Personalised recommendations