Advertisement

Applied Psychophysiology and Biofeedback

, Volume 42, Issue 3, pp 235–245 | Cite as

Effect of Heart Rate Variability Biofeedback on Sport Performance, a Systematic Review

  • Sergio Jiménez Morgan
  • José Arturo Molina Mora
Article

Abstract

Aim is to determine if the training with heart rate variability biofeedback allows to improve performance in athletes of different disciplines. Methods such as database search on Web of Science, SpringerLink, EBSCO Academic Search Complete, SPORTDiscus, Pubmed/Medline, and PROQUEST Academic Research Library, as well as manual reference registration. The eligibility criteria were: (a) published scientific articles; (b) experimental studies, quasi-experimental, or case reports; (c) use of HRV BFB as main treatment; (d) sport performance as dependent variable; (e) studies published until October 2016; (f) studies published in English, Spanish, French or Portuguese. The guidelines of the PRISMA statement were followed. Out of the 451 records found, seven items were included. All studies had a small sample size (range from 1 to 30 participants). In 85.71% of the studies (n = 6) the athletes enhanced psychophysiological variables that allowed them to improve their sport performance thanks to training with heart rate variability biofeedback. Despite the limited amount of experimental studies in the field to date, the findings suggest that heart rate variability biofeedback is an effective, safe, and easy-to-learn and apply method for both athletes and coaches in order to improve sport performance.

Keywords

Heart rate variability Biofeedback Sport performance Athletes Autonomic nervous system 

Notes

Funding

No funding was received to perform this systematic review.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10484_2017_9364_MOESM1_ESM.docx (121 kb)
Supplementary material 1 (DOCX 120 KB)

References

  1. Abhishekh, H. A., Nisarga, P., Kisan, R., Meghana, A., Chandran, S., Trichur, R., & Sathyaprabha, T. N. (2013). Influence of age and gender on autonomic regulation of heart. Journal of Clinical Monitoring and Computing, 27(3), 259–264. doi: 10.1007/s10877-012-9424-3.CrossRefPubMedGoogle Scholar
  2. Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring: Applications and limitations. Sports Medicine, 33(7), 517–538.CrossRefPubMedGoogle Scholar
  3. Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 33(12), 889–919.CrossRefPubMedGoogle Scholar
  4. Billman, G. E. (2013). The effect of heart rate on the heart rate variability response to autonomic interventions. Frontiers in Physiology, 4, 222. doi: 10.3389/fphys.2013.00222.PubMedPubMedCentralGoogle Scholar
  5. Blumenstein, B., Bar-Eli, M., & Tenenbaum, G. (1997). A five-step approach to mental training incorporating biofeedback. The Sport Psychologist, 11, 440–453.CrossRefGoogle Scholar
  6. Boutcher, S. H., Park, Y., Dunn, S. L., & Boutcher, Y. N. (2013). The relationship between cardiac autonomic function and maximal oxygen uptake response to high-intensity intermittent-exercise training. Journal of Sports Sciences, 31, 1024–1029. doi: 10.1080/02640414.2012.762984.CrossRefPubMedGoogle Scholar
  7. Buccelletti, E., Gilardi, E., Scaini, E., Galiuto, L., Persiani, R., Biondi, A., … Silveri, N. G. (2009). Heart rate variability and myocardial infarction: systematic literature review and meta-analysis. European Review for Medical and Pharmacological Sciences, 13(4), 299–307. doi: 10.1002/14651858.CD006577.pub3.PubMedGoogle Scholar
  8. Buchheit, M. (2014). Monitoring training status with HR measures: Do all roads lead to Rome? Frontiers in Physiology, 5, 73. doi: 10.3389/fphys.2014.00073.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choudhary, R., Triveti, V., & Choudary, S. (2016). Effect of heart rate variability biofeedback training on the performance of track athletes. International Journal of Therapies and Rehabilitation Research, 5(4), 166–174. doi: 10.5455/ijtrr.000000159.CrossRefGoogle Scholar
  10. Cornelissen, V. A., Verheyden, B., Aubert, A. E., & Fagard, R. H. (2010). Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart rate variability. Journal of Human Hypertension, 24, 175–182.CrossRefPubMedGoogle Scholar
  11. Culbert, T., Martin, H., & McCraty, R. (2004). A practitioner’s guide: Applications of the freeze-framer interactive learning system. Boulder Creek, CA: Heart Math Institute.Google Scholar
  12. da Silva, F. A. K., Penachini da Costa de Rezende Barbosa, M., Marques Vanderlei, F., Destro Christofaro, D. G., & Marques Vanderlei, L. C. (2016). Application of heart rate variability in diagnosis and prognosis of individuals with diabetes mellitus: Systematic review. Annals of Noninvasive Electrocardiology: The Official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 21(3), 223–235. doi: 10.1111/anec.12372.CrossRefGoogle Scholar
  13. de Bruin, E. I., van der Zwan, J. E., & Bögels, S. M. (2016). A RCT comparing daily mindfulness meditations, biofeedback exercises, and daily physical exercise on attention control, executive functioning, mindful awareness, self-compassion, and worrying in stressed young adults. Mindfulness, 7(5), 1182–1192. doi: 10.1007/s12671-016-0561-5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dong, J. G. (2016). The role of heart rate variability in sports physiology. Experimental and Therapeutic Medicine, 11(5), 1531–1536. doi: 10.3892/etm.2016.3104.PubMedPubMedCentralGoogle Scholar
  15. Eyre, E. L. J., Duncan, M. J., Birch, S. L., & Fisher, J. P. (2014). The influence of age and weight status on cardiac autonomic control in healthy children: A review. Autonomic Neuroscience, 186, 8–21. doi: 10.1016/j.autneu.2014.09.019.CrossRefPubMedGoogle Scholar
  16. Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition and Emotion, 6, 409–434.CrossRefGoogle Scholar
  17. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attention control theory. Emotion (Washington, D. C.), 7, 336–353.CrossRefGoogle Scholar
  18. Gevirtz, R. (2013). The promise of heart rate variability biofeedback: Evidence-based applications. Biofeedback, 41(3), 110–120. doi: 10.5298/1081-5937-41.3.01.CrossRefGoogle Scholar
  19. Gross, M. J., Shearer, D. A., Bringer, J. D., Hall, R., Cook, C. J., & Kilduff, L. P. (2016). Abbreviated resonant frequency training to augment heart rate variability and enhance on-demand emotional regulation in elite sport support staff. Applied Psychophysiology and Biofeedback, 41, 263–274. doi: 10.1007/s10484-015-9330-9.CrossRefPubMedGoogle Scholar
  20. Hautala, A. J., Makikallio, T. H., Kiviniemi, A., Laukkanen, R. T., Nissila, S., Huikuri, H. V., & Tulppo, M. P. (2003). Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Physiology Heart and Circulatory Physiology, 285, H1747–H1752. doi: 10.1152/ajpheart.00202.CrossRefPubMedGoogle Scholar
  21. Hayano, J., Yasuma, F., Okada, A., Mukai, S., & Fujinami, T. (1996). Respiratory sinus arrhythmia: A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation, 94, 842–847. doi: 10.1161/01.CIR.94.4.842.CrossRefPubMedGoogle Scholar
  22. HeartMath® Intitute. (2008). The Quick Coherence® technique for adults. Retrieved from https://www.heartmath.org/resources/heartmath-tools/quick-coherence-technique-for-adults/.
  23. Hill, L. K., Hu, D. D., Koenig, J., Sollers, J. J., Kapuku, G., Wang, X., … Thayer, J. F. (2015). Ethnic differences in resting heart rate variability: A systematic review and meta-analysis. Psychosomatic Medicine, 77(1), 16–25. doi: 10.1097/PSY.0000000000000133.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Koenig, J., & Thayer, J. F. (2016). Sex differences in healthy human heart rate variability: A meta-analysis. Neuroscience and Behavioural Reviews, 64, 288–310. doi: 10.1016/j.neubiorev.2016.CrossRefGoogle Scholar
  25. Krisanaprakornkit, T., Krisanaprakornkit, W., Piyavhatkul, N., & Laopaiboon, M. (2006). Meditation therapy for anxiety disorders. Cochrane Database Systematic Reviews, 25(1), CD004998.Google Scholar
  26. Lagos, L., Vaschillo, E., Vaschillo, B., Lehrer, P., Bates, M., & Pandina, R. (2008). Heart rate variability biofeedback as a strategy for dealing with competitive anxiety: A case study. Biofeedback, 36(3), 109–115.Google Scholar
  27. Lagos, L., Vaschillo, E., Vaschillo, B., Lehrer, P., Bates, M., & Pandina, R. (2011). Virtual reality-assisted heart rate variability biofeedback as a strategy to improve golf performance: A case study. Biofeedback, 39(1), 15–20.CrossRefGoogle Scholar
  28. Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, 756. doi: 10.3389/fpsyg.2014.00756.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177–191.CrossRefPubMedGoogle Scholar
  30. Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., … Hamer, R. M. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65, 796–805. doi: 10.1097/01.PSY.0000089200.81962.19.CrossRefPubMedGoogle Scholar
  31. Miu, A. C., Heilman, R. M., & Miclea, M. (2009). Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Autonomic Neuroscience-Basic, 145(1–2), 99–103.CrossRefGoogle Scholar
  32. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mourot, L., Bouhaddi, M., Perrey, S., Cappelle, S., Henriet, M. T., Wolf, J. P., … Regnard, J. (2004). Decrease in heart rate variability with overtraining: Assessment by the Poincaré Plot analysis. Clinical Physiology and Functional Imaging, 24(1), 10–18.CrossRefPubMedGoogle Scholar
  34. Nideffer, R.M. (1986). Concentration and attention control training. In J. Williams (Ed.), Applied sport psychology (pp. 257–269). Palo Alto: Mayfield.Google Scholar
  35. Nideffer, R.M. (1989). Theoretical and practical relationships between attention, anxiety, and performance in sport. In D. Hackfort & C. D. Spielberger (Eds.), Anxiety in sport: An international perspective (pp. 117–136). New York: Hemisphere Pub. Corp.Google Scholar
  36. Paul, M., & Garg, K. (2012). The effect of heart rate variability biofeedback on performance psychology of basketball players. Applied Psychophysiology & Biofeedback, 37(2), 131–144. doi: 10.1007/s10484-012-9185-2.CrossRefGoogle Scholar
  37. Paul, M., Garg, K., & Sandhu, J. S. (2012). Role of biofeedback in optimizing psychomotor performance in sports. Asian Journal of Sports Medicine, 3(1), 29–40.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Prinsloo, G. E., Rauch, H. G., & Derman, W. E. (2014). A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine. The Physician and Sportsmedicine, 42(2), 88–99. doi: 10.3810/psm.2014.05.2061.CrossRefPubMedGoogle Scholar
  39. Raymond, J., Sajid, I., Parkinson, L. A., & Gruzelier, J. H. (2005). Biofeedback and dance performance: A preliminary investigation. Applied Psychophysiology and Biofeedback, 30(1), 64–73. doi: 10.1007/s10484-005-2175-x.CrossRefPubMedGoogle Scholar
  40. Routledge, F. S., Campbell, T. S., McFetridge-Durdle, J. A., & Bacon, S. L. (2010). Improvements in heart rate variability with exercise therapy. Canadian Journal of Cardiology, 26(6), 303–312.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sacha, J. (2013). Why should one normalize heart rate variability with respect to average heart rate. Frontiers in Physiology, 4, 306. doi: 10.3389/fphys.2013.00306.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sandercock, G. R., & Brodie, D. A. (2006). The use of heart rate variability measures to assess autonomic control during exercise. Scandinavian Journal of Medicine & Science in Sports, 16(5), 302–313.CrossRefGoogle Scholar
  43. Sandercock, G. R. H., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: Inferences from meta-analysis. Medicine and Science in Sports and Exercise, 37(3), 433–439. doi: 10.1249/01.MSS.0000155388.39002.9D.CrossRefPubMedGoogle Scholar
  44. Shiogai, Y., Stefanovska, A., & McClintock, P. V. (2010). Nonlinear dynamics of cardiovascular ageing. Physics Reports, 488(2–3), 51–110.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tanis, C. J. (2012). Performance enhancement and stress reduction using biofeedback with women collegiate volleyball players. Athletic Insight, 4(2), 127–140.Google Scholar
  46. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Behavioural Reviews, 36(2), 747–756. doi: 10.1016/j.neubiorev.2011.11.00.CrossRefGoogle Scholar
  47. Thomas, J. R., French, K. E., & Humphries, C. A. (1986). Knowledge development and sport performance: Directions for motor behaviour research. Journal of Sport Psychology, 8, 259–272.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sergio Jiménez Morgan
    • 1
  • José Arturo Molina Mora
    • 1
  1. 1.School of MedicineUniversity of Costa RicaSan JoséCosta Rica

Personalised recommendations