Applied Psychophysiology and Biofeedback

, Volume 41, Issue 1, pp 81–92 | Cite as

Behavioral, Cognitive, and Motor Preparation Deficits in a Visual Cued Spatial Attention Task in Autism Spectrum Disorder

  • Estate M. Sokhadze
  • Allan Tasman
  • Guela E. Sokhadze
  • Ayman S. El-Baz
  • Manuel F. Casanova


Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80 % of subjects with autism display “motor dyspraxia” or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N = 30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more refined specifics of dyspraxia symptoms to investigate functional connectivity abnormalities underlying motor skills deficits in autism.


Autism Reaction time Event-related potential Lateralized readiness potential Dyspraxia Motor response preparation Spatial attention 


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: American Psychiatric Press.Google Scholar
  2. Asperger, H. (1944). Die „Autistischen Psychopathen” im Kindesalter. Archiv für Psychiatrie und Nervenkrankheiten, 117, 76–136.CrossRefGoogle Scholar
  3. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24(2), 9228–9231.CrossRefPubMedGoogle Scholar
  4. Brian, J., Bryson, S. E., Garon, N., Roberts, W., Smith, I. M., Szatmari, P., & Zwaigenbaum, L. (2008). Clinical assessment of autism in high-risk 18-month-olds. Autism, 12(5), 433–456.CrossRefPubMedGoogle Scholar
  5. Casanova, M. F., El-Baz, A., Mott, M., Mannheim, G., Hassan, H., Fahmi, R., et al. (2009). Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy. Journal of Autism and Developmental Disorders, 39(5), 751–764.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112(3), 287–303.CrossRefPubMedGoogle Scholar
  7. Coles, M. G. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26(3), 251–269.CrossRefPubMedGoogle Scholar
  8. Cummings, J. L. (1998). Frontal-subcortical circuits and human behavior: Commentary. Journal of Psychosomatic Research, 44, 627–628.CrossRefPubMedGoogle Scholar
  9. Dowell, L. R., Mahone, E. M., & Mostofsky, S. H. (2009). Association of postural knowledge and basic motor skill with dyspraxia in autism: Implication for abnormalities in disturbed connectivity and motor learning. Neuropsychology, 23(5), 563–570.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Dziuk, M. A., Gidley Larson, J. C., Apostu, A., Mahone, E. M., Denckla, M. B., & Mostofsky, S. H. (2007). Dyspraxia in autism: Association with motor, social, and communicative deficits. Developmental Medicine and Child Neurology, 49(10), 734–739.CrossRefPubMedGoogle Scholar
  11. Eimer, M. (1998). The lateralized readiness potential as an on-line measure of central response activation processes. Behavior Research Methods, Instruments, & Computers, 30(1), 146–156.CrossRefGoogle Scholar
  12. Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59.CrossRefPubMedGoogle Scholar
  13. Fan, Y. T., Decety, J., Yang, C. Y., Liu, J. L., & Cheng, Y. (2010). Unbroken mirror neurons in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 51(9), 981–988.CrossRefPubMedGoogle Scholar
  14. Faw, B. (2003). Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: A tutorial review. Consciousness and Cognition, 12, 83–139.CrossRefPubMedGoogle Scholar
  15. Fuentes, C. T., Mostofsky, S. H., & Bastian, A. J. (2011). No proprioceptive deficits in autism despite movement-related sensory and execution impairments. Journal of Autism and Developmental Disorders, 41(10), 1352–1361.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the rontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.Google Scholar
  17. Fuster, J. M. (1999). Cognitive functions of the frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), Human frontal lobes (pp. 187–195). New York: Guilford.Google Scholar
  18. Fuster, J. M. (2001). The prefrontal cortex—An update: Time is of the essence. Neuron, 30(2), 319–333.CrossRefPubMedGoogle Scholar
  19. Geschwind, D. H., & Iacoboni, M. (1999). Structural and functional asymmetries of the human frontal lobes. In B. L. Miller & J. L. Cummings (Eds.), Human frontal lobes (pp. 45–70). New York: Guilford.Google Scholar
  20. Gibbs, J., Appleton, J., & Appleton, R. (2007). Dyspraxia or developmental coordination disorder. Unraveling the enigma. Archives of Disease in Childhood, 92(6), 534–539.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Gidley Larson, J. C., & Mostofsky, S. H. (2006). Motor deficits in autism. In R. Tuchman & I. Rapin (Eds.), Autism: A neurological disorder of early brain development (pp. 231–247). London: MacKeith Press.Google Scholar
  22. Golob, E. J., Pratt, H., & Starr, A. (2002). Preparatory slow potentials and event-related potentials in an auditory cued attention task. Clinical Neurophysiology, 113, 1544–1557.CrossRefPubMedGoogle Scholar
  23. Gowen, E., & Hamilton, A. (2013). Motor abilities in autism: A review using a computational context. Journal of Autism and Developmental Disorders, 43(2), 323–344.CrossRefPubMedGoogle Scholar
  24. Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 331–344.PubMedGoogle Scholar
  25. Hamilton, A. (2008). Emulation and mimicry for social interaction: A theoretical approach to imitation in autism. Quarterly Journal of Experimental Psychology, 61, 101–115.CrossRefGoogle Scholar
  26. Hamilton, A., Brindley, R., & Frith, U. (2007). Imitation and action understanding in autistic spectrum disorders: How valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia, 45, 1859–1868.CrossRefPubMedGoogle Scholar
  27. Heilman, K. M., & Rothi, L. J. (1993). Apraxia. In K. Heilman & E. Valstein (Eds.), Clinical neuropsychology (3rd ed., pp. 141–163). New York: Oxford University Press.Google Scholar
  28. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540.CrossRefPubMedGoogle Scholar
  29. Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189–233.CrossRefGoogle Scholar
  30. Hill, E. L., & Frith, U. (2003). Understanding autism: Insights from mind and brain. Philosophical Transactions of the Royal Society London, B, 358, 281–289.CrossRefGoogle Scholar
  31. Hoshiyama, M., Kakigi, R., Berg, P., Koyama, S., Kitamura, Y., & Shimojo, M. (1997). Identification of motor and sensory brain activities during unilateral finger movement: Spatiotemporal source analysis of movement-associated magnetic fields. Experimental Brain Research, 115, 6–14.CrossRefPubMedGoogle Scholar
  32. Iverson, J. M., & Braddock, B. A. (2011). Links between language, gesture, and motor skill in children with language impairment. Journal of Speech, Language, and Hearing Research, 54(1), 72–86.CrossRefPubMedGoogle Scholar
  33. Jahanshahi, M., & Hallet, M. (2003). Bereitschaftspotential: Movement-related cortical potentials. New York: Kluwer Academic.CrossRefGoogle Scholar
  34. Jansiewicz, E. M., Goldberg, M. C., Newschaffer, C. J., Denckla, M. B., Landa, R., & Mostofsky, S. H. (2006). Motor signs distinguish children with high functioning autism and Asperger’s syndrome from controls. Journal of Autism and Developmental Disorders, 36, 613–621.CrossRefPubMedGoogle Scholar
  35. Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphomtery. Cerebral Cortex, 17(4), 951–961.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  37. Kawamura, M., & Mochizuki, S. (1999). Primary progressive apraxia. Neuropathology, 19, 249–258.CrossRefGoogle Scholar
  38. Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage, 24(3), 810–821.CrossRefPubMedGoogle Scholar
  39. Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview-revised (ADI-R). Los Angeles, CA: Western Psychological Services.Google Scholar
  40. Leighton, J., Bird, G., Charman, T., & Heyes, C. (2008). Weak imitative performance is not due to a functional ‘mirroring’ deficit in adults with autism spectrum disorders. Neuropsychologia, 46, 1041–1049.CrossRefPubMedGoogle Scholar
  41. Leuthold, H., & Jentzsch, I. (2001). Neural correlates of advance movement preparation: A dipole source analysis approach. Brain Research. Cognitive Brain Research, 12(2), 207–224.CrossRefPubMedGoogle Scholar
  42. Leuthold, H., Sommer, W., & Ulrich, R. (2004). Preparing for action: Inferences from CNV and LRP. Journal of Psychophysiology, 18, 77–88.CrossRefGoogle Scholar
  43. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185–212.CrossRefPubMedGoogle Scholar
  44. MacNeil, L. K., & Mostofsky, S. H. (2012). Specificity of dyspraxia in children with autism. Neuropsychology, 26(2), 165–171.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Ming, X., Brimacombe, M., & Wagner, G. C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain & Development, 29(9), 565–570.CrossRefGoogle Scholar
  46. Mostofsky, S. H., Dubey, P., Jerath, V. K., Jansiewicz, E. M., Goldberg, M. C., & Denckla, M. B. (2006). Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. Journal of the International Neuropsychological Society, 12(3), 314–326.CrossRefPubMedGoogle Scholar
  47. Mottron, L., Burack, J. A., Iarocci, G., Belleville, S., & Enns, J. T. (2003). Locally oriented perception with intact global processing among adolescents with high-functioning autism: Evidence from multiple paradigms. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44(6), 904–913.CrossRefGoogle Scholar
  48. Murphy, K. R., & Myors, B. (2004). Statistical power analysis. A simple and general model for traditional and modern hypotheses tests (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  49. Oberman, L. M., & Ramachandran, V. M. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133, 310–327.CrossRefPubMedGoogle Scholar
  50. Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorder in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 1558–1565.CrossRefPubMedGoogle Scholar
  51. Ozonoff, S. (1997). Casual mechanisms of autism: Unifying perspectives from an information-processing framework. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 868–879). New York: Wiley.Google Scholar
  52. Ozonoff, S., Strayer, D. L., McMahon, W. M., & Filloux, F. (1994). Executive function abilities in autism and Tourette syndrome: An information processing approach. Journal of Child Psychology and Psychiatry and Allied Disciplines, 35(6), 1015–1132.CrossRefGoogle Scholar
  53. Passingham, R. (1995). Frontal lobes and voluntary action. Oxford: Oxford University Press.Google Scholar
  54. Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121, 147–153.CrossRefPubMedGoogle Scholar
  55. Platz, T., Kim, I. H., Pintschovious, H., Winter, T., Kieselbach, A., Villringer, K., et al. (2000). Multimodal EEG analysis in man suggests impairment-specific changes in movement-related electric brain activity after stroke. Brain, 123(12), 2475–2490.CrossRefPubMedGoogle Scholar
  56. Pless, M., Carlsson, M., Sundelin, C., & Persson, K. (2001). Pre-school children with developmental co-ordination disorder: Self-perceived competence and group motor skill intervention. Acta Paediatrica, 90(5), 532–538.CrossRefPubMedGoogle Scholar
  57. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Medicine, 32, 3–25.Google Scholar
  58. Praamstra, P., Schmitz, F., Freund, H. J., & Schnitzler, A. (1999). Magneto-encephalographic correlates of the lateralized readiness potential. Cognitive Brain Research, 8(2), 77–85.CrossRefPubMedGoogle Scholar
  59. Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37, 321–328.CrossRefPubMedGoogle Scholar
  60. Ramachandran, V. S., & Oberman, L. M. (2006). Broken mirrors: A theory of autism. Scientific American, 295(5), 62–69.CrossRefPubMedGoogle Scholar
  61. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review Neuroscience, 27, 169–192.CrossRefGoogle Scholar
  62. Rowland, L. P., & Pedley, T. A. (2010). Meritt’s neurology (12th ed.). Philadelphia, PA: Lippincot Williams and Wilkins.Google Scholar
  63. Shallice, T., & Burgess, P. W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741.CrossRefPubMedGoogle Scholar
  64. Smith, S. E., & Chatterjee, A. (2008). Visuospatial attention in children. Archives of Neurology, 65, 1284–1288.PubMedGoogle Scholar
  65. Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., et al. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Appied Psychophysiology and Biofeedback, 35(2), 147–161.Google Scholar
  66. Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effect of a low-frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619–634.Google Scholar
  67. Spatt, J., & Goldenberg, G. (1997). Speed of motor execution and apraxia. Journal of Clinical and Experimental Neuropsychology, 19, 850–856.CrossRefPubMedGoogle Scholar
  68. Stieglitz Ham, H., Bartolo, A., Corley, M., Rajendran, G., Szabo, A., & Swanson, S. (2011). Exploring the relationship between gestural recognition and imitation: Evidence of dyspraxia in autism spectrum disorders. Journal of Autism and Developmental Disorders, 41(1), 1–12.CrossRefPubMedGoogle Scholar
  69. Sutera, S., Pandey, J., Esser, E. L., Rosenthal, M. A., Wilson, L. B., Barton, M., et al. (2007). Predictors of optimal outcome in toddlers diagnosed with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 98–107.CrossRefPubMedGoogle Scholar
  70. Ulrich, R., Leuthold, W., & Sommer, W. (1998). Motor programming of response force and movement direction. Psychophysiology, 35, 721–728.CrossRefPubMedGoogle Scholar
  71. Van Waevelde, H., Oostra, A., Dewitte, G., Van Den Broeck, C., & Jongmans, M. J. (2010). Stability of motor problems in young children with or at risk of autism spectrum disorder, ADHD, and or developmental coordination disorder. Developmental Medicine and Child Neurology, 52(8), e174–e178.CrossRefGoogle Scholar
  72. Wang, L., Mottron, L., Peng, D., Berthiaume, C., & Dawson, M. (2007). Local bias and local-to-global interference without global deficit: A robust finding in autism under various conditions of attention, exposure of attention, exposure time, and visual angle. Cognitive Neuropsychology, 24(5), 550–574.CrossRefPubMedGoogle Scholar
  73. Wascher, E., Verleger, R., Vieregge, P., Jaskowski, P., Koch, S., & Kompf, D. (1997). Responses to cued signals in Parkinson’s disease. Distinguishing between disorders of cognition and of activation. Brain, 120(8), 1355–1375.CrossRefPubMedGoogle Scholar
  74. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment Inc.Google Scholar
  75. Weimer, A. K., Schatz, A., Lincoln, A., Ballantyne, A. O., & Trauner, D. A. (2001). “Motor” impairment in Asperger syndrome: Evidence for a deficit in propioception. Journal of Developmental and Behavioral Pediatrics, 22(2), 92–101.CrossRefPubMedGoogle Scholar
  76. Williams, J., Whiten, A., Suddendorf, T., & Perrett, D. (2001). Imitation, mirror neurons, and autism. Neuroscience and Biobehavioral Reviews, 25, 577–596.CrossRefGoogle Scholar
  77. Zikopoulos, B., & Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. The Journal of Neuroscience, 30(44), 14595–14609.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Estate M. Sokhadze
    • 1
  • Allan Tasman
    • 1
  • Guela E. Sokhadze
    • 2
  • Ayman S. El-Baz
    • 3
  • Manuel F. Casanova
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations