Applied Psychophysiology and Biofeedback

, Volume 40, Issue 4, pp 339–347 | Cite as

Saliva Amylase as a Measure of Sympathetic Change Elicited by Autogenic Training in Patients with Functional Somatic Syndromes

  • Tadashi Kiba
  • Kenji Kanbara
  • Ikumi Ban
  • Fumie Kato
  • Sadanobu Kawashima
  • Yukie Saka
  • Kazumi Yamamoto
  • Junji Nishiyama
  • Yasuyuki Mizuno
  • Tetsuya Abe
  • Mikihiko Fukunaga
Article

Abstract

The aim of this study was to discuss the effect of autogenic training (AT) on patients with functional somatic syndrome (FSS) using salivary amylase, the skin temperature of the finger, subjective severity of symptoms, and psychological characteristics as measures. We assessed 20 patients with FSS and 23 healthy controls before and after AT. Baseline levels of salivary amylase prior to an AT session were significantly higher in the FSS group than in the control group. However, this difference was not significant after AT. The skin temperature of the finger increased after AT in both the FSS and control groups. AT contributed to the improvement of somatic symptoms in patients with FSS. Our results regarding psychological characteristics suggest that mood disturbances are deeply involved in the pathology of FSS. Individuals with FSS exhibited elevated levels of sympathetic activity compared with healthy controls. Our data indicates that AT eased dysregulation of the autonomic nervous system in patients with FSS. Thus, salivary amylase may be a useful index of change induced by AT in patients with FSS.

Keywords

Autogenic training Dysregulation of the autonomic nervous system Functional somatic syndrome Salivary amylase Sympathetic activity 

References

  1. ACOG Practice Bulletin. (2001). Premenstrual syndrome. Intenational Journal of Gynecolgy & Obstetrics, 73, 183–191.CrossRefGoogle Scholar
  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, 4th ed. Text revision. Washington, DC: American Psychiatric Press.Google Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing.Google Scholar
  4. Barsky, A. J., & Borus, J. F. (1999). Functional somatic syndrome. Annals Internal Medicine, 130, 910–921.CrossRefGoogle Scholar
  5. Blanchard, E. B., & Kim, M. (2005). The effect of the definition of menstrually-related headache on the response to biofeedback treatment. Applied Psychophysiology and Biofeedback, 30(1), 53–63.CrossRefPubMedGoogle Scholar
  6. Bosch, J. A., Brand, H. S., Ligtenberg, T. J., Bermond, B., Hoogstraten, J., & Nieuw Amerongen, A. V. (1996). Psychological stress as a determinant of protein levels and salivary-induced aggregation of streptococcus gordonii in human whole saliva. Psychosomatic Medicine, 58(4), 374–382.CrossRefPubMedGoogle Scholar
  7. Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65(2), 245–258.CrossRefPubMedGoogle Scholar
  8. Bosch, J. A., Ring, C., De Geus, E. C., Veerman, E. C. I., & Amerongen, A. V. N. (2002). Stress and secretory immunity. International Review of Neurobiology, 52, 213–253.CrossRefPubMedGoogle Scholar
  9. Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). α-Amylase as a reliable and convenient measure of sympathetic activity: Don’t start salivating just yet! Psychoneuroendocrinology, 36, 449–453.CrossRefPubMedGoogle Scholar
  10. Christensen, S. S., Frostholm, L., Ørnbøl, E., & Schröder, A. (2015). Changes in illness perceptions mediated the effect of cognitive behavioural therapy in severe functional somatic syndromes. Journal of Psychosomatic Research, 78, 363–370.CrossRefPubMedGoogle Scholar
  11. Collet, L., Cottraux, J., & Juenet, C. (1986). GSR feedback and schultz relaxation in tension headaches: A comparative study. Pain, 25(2), 205–213.CrossRefPubMedGoogle Scholar
  12. Fink, P., Toft, T., Hansen, M. S., Ørnbøl, E., & Olesen, F. (2007). Symptoms and syndromes of bodily distress: An exploratory study of 978 internal medical, neurological, and primary care patients. Psychosomatic Research, 69, 30–39.CrossRefGoogle Scholar
  13. Fukuda, K., Staus, S. E., Hickie, I., Sharpe, M. C., Dobbins, J. G., & Komaroff, A. (1994). The chronic fatigue syndrome: A comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Annals of Internal Medicine, 121(12), 953–959.CrossRefPubMedGoogle Scholar
  14. Fukunaga, M., Takebayashi, N., Fujita, M., & Nakai, Y. (1997). The effects of ten session of group autogenic training on the skin temperature. Japanese Journal of Psychosomatic Medicine, 37(7), 511–517.Google Scholar
  15. Giesecke, T., Williams, D. A., Harris, R. E., Cupps, T. R., Tian, X., Tian, T. X., et al. (2003). Subgrouping of fibromyalgia patients on the basis of pressure-pain thresholds and psychological factors. Arthritis and Rheumatology, 48(10), 2916–2922.CrossRefGoogle Scholar
  16. Grillon, C., Duncko, R., Covington, M. F., Kopperman, L., & Kling, M. A. (2007). Acute stress potentates anxiety in humans. Biological Psychiatry, 62, 1183–1186.CrossRefPubMedGoogle Scholar
  17. Hatta, H., Higashi, A., Yashiro, H., Ozawa, K., Hayashi, K., Kiyota, K., et al. (1998). A validation of the Hospital Anxiety and Depression Scale. Japanese Journal of Psychosomatic Medicine, 38(5), 309–315.Google Scholar
  18. Henningsen, P., Zimmermann, T., & Sattel, H. (2003). Medically unexplained physical symptoms, anxiety, and depression: A meta-analytic review. Psychosomatic Medicine, 65(4), 528–533.CrossRefPubMedGoogle Scholar
  19. Henningsen, P., Zipfel, S., & Herzog, W. (2007). Management of functional somatic syndromes. Lancet, 369, 946–955.CrossRefPubMedGoogle Scholar
  20. Ichinose, M. (2010). Physiological parameter in human and its evaluation. Japanese Journal of Biofeedback Research, 37(2), 109–115.Google Scholar
  21. Ioannou, S., Gallese, V., & Merla, A. (2014). Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology, 51, 951–963.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Irie, M., Mishima, N., & Nagata, S. (1996). Psychophysiological effect of first-time autogenic training on healthy beginners. Japanese Journal of Psychosomatic Medicine, 36(4), 299–305.Google Scholar
  23. Kanbara, K., & Fukunaga, M. (2009). The pathology of functional somatic syndrome. Nippon Rinsho Japanese Journal of Clinical Medicine, 67(9), 1669–1675.PubMedGoogle Scholar
  24. Kanbara, K., Fukunaga, M., Mutsuura, H., Takeuchi, H., Kitamura, K., & Nakai, Y. (2007). An exploratory study of subgrouping of patients with functional somatic syndrome based on the psychophysiological stress response: Its relationship with moods and subjective variables. Psychosomatic Medicine, 69, 158–165.CrossRefPubMedGoogle Scholar
  25. Kanbara, K., Mitani, Y., Fukunaga, M., Ishino, S., Takebayashi, N., & Nakai, Y. (2004). Paradoxical results of psychophysiological stress profile in functional somatic syndrome: Correlation between subjective tension score and objective stress response. Applied Psychophysiology and Biofeedback, 29(4), 255–268.CrossRefPubMedGoogle Scholar
  26. Kanji, N., White, A. R., & Ernst, E. (2006). Autogenic training for tension type headaches: A systematic review of controlled trials. Complement Therapies in Medicine, 14(2), 144–150.CrossRefGoogle Scholar
  27. Kasai, H. (2012). History and evolution of autogenic training. Japanese Journal of Psychosomatic Medicine, 52(1), 12–18.Google Scholar
  28. Keel, P. J., Bodoky, C., Gerhard, U., & Müller, W. (1998). Comparison of integrated group therapy and group relaxation training for fibromyalgia. The Clinical Journal of Pain, 14(3), 232–238.CrossRefPubMedGoogle Scholar
  29. Kiba, T., Kanbara, K., Yamamoto, K., Ban, I., Oka, Y., Kato, F., et al. (2013). The relationship of pre-stress α-amylase levels to alexithymia in patients with functional somatic syndrome. Japanese Journal of Psychosomatic Medicine, 53(7), 670–681.Google Scholar
  30. Koike, Y., Monju, T., Toda, M., & Ohta, F. (1979). Diagnosis “ex juvantibus” for patients of foreign-body sensation in the throat. The Oto-rhino-and Laryngological Clinic, 72(11), 1499–1506.CrossRefGoogle Scholar
  31. Komai, G., Maeda, M., Arimura, T., Nakata, A., Shinoda, H., Ogata, I., et al. (2003). The reliability and factorial validity the Japanese version of the 20-item Toronto Alexithymia Scale (TAS-20). Japanese Journal of Psychosomatic Medicine, 43(12), 839–846.Google Scholar
  32. Last, A. R., & Hulbert, K. (2009). Chronic low back pain: Evaluation and management. American Family Physician, 79(12), 1067–1074.PubMedGoogle Scholar
  33. Longstreth, G. F., Thompson, W. G., Chey, W. D., Houghton, L. A., Mearin, F., & Spiller, R. C. (2006). Functional bowel disorders. C1. Irritable bowel syndrome. Ganstoenteolory, 130, 1480–1481.Google Scholar
  34. Luthe, W., & Schultz, J. H. (1969). Autogenic therapy 2. New York: Grune and Stratton Inc.Google Scholar
  35. Matsuoka, Y. (2012). Application of autogenic training in psychosomatic disease. Japanese Journal of Psychosomatic Medicine, 52(1), 32–37.Google Scholar
  36. Mitani, S., Fujita, M., Sakamoto, S., & Shirakawa, T. (2006). Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service worker for posttraumatic stress disorder. Journal of Psychosomatic Research, 60(5), 439–444.CrossRefPubMedGoogle Scholar
  37. Mizuno, Y., Yamaguchi, M., & Yoshida, H. (2001). Is saliva an index for stress level? Japanese Journal of Medical Electronics and Biological Engineering, 39(3), 234–239.Google Scholar
  38. Murakami, M., Tahara, Y., Takeda, K., & Yamaguchi, M. (2009). Psychosomatic stress and salivary amylase activity in junior high school student. Transaction of Japanese Society for Medical and Biological Engineering, 47(2), 166–171.Google Scholar
  39. Mutsuura, H., Kanbara, K., Fukunaga, M., Yamamoto, K., Ban, I., Kitamura, K., et al. (2009). Depression and anxiety correlate differently with salivary free cortisol in the morning in patients with functional somatic syndrome. Applied Psychophysiology and Biofeedback, 34(4), 291–298.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Nakao, M., Kumano, H., Kuboki, T., & Barsky, A. J. (2001). Reliability and validity of the Japanese version of Somatosensory Amplification Scale: Clinical application to psychosomatic illness. Japanese Journal of Psychosomatic Medicine, 41(7), 539–547.Google Scholar
  41. Nater, U. M., Rohleder, N., Schlotz, W., Ehlert, U., & Kirschbaum, C. (2007). Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology, 32(4), 392–401.CrossRefPubMedGoogle Scholar
  42. Nimnuan, C., Rabe-Hesketh, S., Wessely, S., & Hotopf, M. (2001). How many functional somatic syndromes? Journal of Psychosomatic Research, 51(4), 549–557.CrossRefPubMedGoogle Scholar
  43. Noto, Y., Sato, T., Kudo, M., Kurata, K., & Hirota, K. (2005). The relationship between salivary biomarker and state-trait anxiety inventory score under mental arithmetic stress: a pilot study. Anesthesia and Analgesia, 101(6), 1873–1876.CrossRefPubMedGoogle Scholar
  44. Oka, T., Handa, M., Matsuoka, Y., & Nakagawa, T. (1994). The effect of autogenic training on vagal nervous function. Japanese Journal of Autogenic Therapy, 14(1–2), 1–9.Google Scholar
  45. Oka, T., & Koyama, H. (2012). Psychophysiological effects of autogenic training and its effectiveness for stress-related psychosomatic diseases. Japanese Journal of Psychosomatic Medicine, 52(1), 25–31.Google Scholar
  46. Oka, T., Matsuoka, Y., Mishima, N., & Nakagawa, T. (1993). The effect of autogenic training on the autonomic nervous function: An analysis of CVR-R, Microvibration and CVWH100. Japanese Journal of Psychosomatic Medicine, 33(4), 293–300.Google Scholar
  47. Okifuji, A., & Turk, D. C. (2002). Stress and psychophysiological dysregulation in patients with fibromyalgia syndrome. Applied Psychophysiology and Biofeedback, 27(2), 129–141.CrossRefPubMedGoogle Scholar
  48. Palanisamy, K., Murugappan, M., & Yaacob, S. (2012). Descriptive analysis of skin temperature variability of sympathetic nervous system activity in stress. Journal of Physical Therapy Science, 24(12), 1341–1344.CrossRefGoogle Scholar
  49. Sakano, Y., Sato, K., & Nishizaki, T. (1997). Fluctuation of autogenic responses and characteristics of psychological changes through autogenic training. Japanese Journal of Autogenic Therapy, 16(2), 34–45.Google Scholar
  50. Schultz, J. H., & Luthe, W. (1969). Autogenic therapy 1. New York: Grune and Stratton Inc.Google Scholar
  51. Schulz, J. H. (1932). Das autogene training: Konzentrative Selbstentspannung. Stuttgart: Thieme Verlag.Google Scholar
  52. Shigeno, K., Fukusaki, C., Ohtani, M., & Kobayashi, K. (2009). Effects of hyperoxic inhalation on psychological stress-induce salivary biomarkers. Biomedical Research, 30(4), 245–249.CrossRefGoogle Scholar
  53. Shinozaki, M., Kanazawa, M., Kano, M., Endo, Y., Nakaya, N., Hongo, M., et al. (2010). Effect of autogenic training on general improvement in patients with irritable bowel syndrome: A randomized controlled trial. Applied Psychophysiology and Biofeedback, 35(3), 189–198.CrossRefPubMedGoogle Scholar
  54. Speirs, R. L., Herring, J., Cooper, W. D., Hardy, C. C., & Hind, C. R. K. (1974). The influence of sympathetic activity and isoprenaline on the secretion of amylase from the human parotid gland. Archives Oral Biology, 19, 747–752.CrossRefGoogle Scholar
  55. Spinhoven, P., Linssen, A. C., Van Dyck, R., & Zitman, F. G. (1992). Autogenic training and self-hypnosis in the control of tension headache. General Hospital Psychiatry, 14(6), 408–415.CrossRefPubMedGoogle Scholar
  56. Stetter, F., & Kupper, S. (2002). Autogenic training: A meta-analysis of clinical outcome studies. Applied Psychophysiology and Biofeedback, 27(1), 45–98.CrossRefPubMedGoogle Scholar
  57. Subcommittee of International Headache Society. (2004). The international classification of headache disorders (2nd ed). Cephalalgia, 24(1), 9–160.Google Scholar
  58. Tack, J., Talley, N. J., Camilleri, M., Holtmann, G., Pinjin, H. U., Malagelada, J. M., et al. (2006). Functional gastroduodenal disorders. B1. Functional dyspepsia. Ganstoenteolory, 130, 1466–1468.Google Scholar
  59. Tak, L. M., Cleare, A. J., Ormel, J., Manoharan, A., Kok, I. C., Wessely, S., et al. (2011). Meta-analysis and meta-regression of hypothalamic-pituitary-adrenal axis activity in functional somatic disorders. Biological Psychology, 87(2), 183–194.CrossRefPubMedGoogle Scholar
  60. Tak, L. M., & Rosmalen, J. G. (2010). Dysfunction of stress responsive systems as a risk factor for functional somatic syndromes. Journal of Psychosomatic Research, 68(5), 461–468.CrossRefPubMedGoogle Scholar
  61. Van Dyck, R., Zitman, F. G., Linssen, A. C., & Spinhoven, P. (1991). Autogenic training and future oriented hypnotic imagery in the treatment of tension headache: Outcome and process. The International Journal of Clinical and Experiental Hypnosis, 39(1), 6–23.CrossRefGoogle Scholar
  62. Veen, G., Giltay, E. J., Licht, C. M., Vreeburg, S. A., Cobbaert, C. M., Penninx, B. W., et al. (2013). Evening salivary alpha-amylase, major depressive disorder, and antidepressant use in the Netherlands Study of Depression and Anxiety (NESDA). Psychiatry Research, 208, 41–46.CrossRefPubMedGoogle Scholar
  63. Wessely, S., Nimnuan, C., & Sharpe, M. (1999). Functional somatic syndrome: One or many? Lancet, 354, 936–939.CrossRefPubMedGoogle Scholar
  64. Wewers, M. E., & Lowe, N. K. (1990). A critical review of visual analogue scales in the measurement of clinical phenomena. Research in Nursing & Health, 13(4), 227–236.CrossRefGoogle Scholar
  65. Wolfe, F., Smythe, H. A., Yunas, M. B., Bennett, R. M., Bombardier, C., Golednberg, D. L., et al. (1990). The American college of rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis and Rheumatology, 33(2), 160–172.CrossRefGoogle Scholar
  66. Yamaguchi, M. (2007). Stress evaluation using a biomarker in saliva. The Japanese Journal of Pharmacology, 129(2), 80–84.Google Scholar
  67. Yamaguchi, M., Deguchi, M., & Miyazaki, Y. (2006). The effects of exercise in forest and urban environments on sympathetic nervous activity of normal young adults. Journal of International Medical Research, 34(2), 152–159.CrossRefPubMedGoogle Scholar
  68. Yamaguchi, M., Hanawa, N., & Yoshida, H. (2007). Evaluation of novel monitor for the sympathetic nervous system using salivary amylase activity. Transactions of the Japanese Society for Medical and Biological Engineering, 45(2), 161–168.Google Scholar
  69. Yamashiro, I., Shirakawa, N., & Nakajima, S. (1991). Relation between changes in body temperature and therapeutic effects with autogenic training. Japanese Journal of Autogenic Therapy, 12(1–2), 25–34.Google Scholar
  70. Yokoyama, K., Araki, S., Kawakami, N., & Takeshita, T. (1990). Production of the Japanese edition of profile of mood states (POMS): Assessment of reliability and validity. Nihon Koshu Eisei Zasshi, 37(11), 913–918.PubMedGoogle Scholar
  71. Zitman, F. G., Van Dyck, R., Spinhoven, P., & Linssen, A. C. (1992). Hypnosis and autogenic training in the treatment of tension headaches: A two-phase constructive design study with follow-up. Jounal of Psychosomatic Research, 36(3), 219–228.CrossRefGoogle Scholar
  72. Zsombok, T., Juhasz, G., Budavari, A., Vitrai, J., & Bagdy, G. (2003). Effect of autogenic training on drug consumption in patients with primary headache: an 8-month follow-up study. Headache, 43(3), 251–257.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tadashi Kiba
    • 1
  • Kenji Kanbara
    • 1
  • Ikumi Ban
    • 1
  • Fumie Kato
    • 1
  • Sadanobu Kawashima
    • 1
  • Yukie Saka
    • 1
  • Kazumi Yamamoto
    • 1
    • 2
  • Junji Nishiyama
    • 1
  • Yasuyuki Mizuno
    • 1
  • Tetsuya Abe
    • 1
  • Mikihiko Fukunaga
    • 1
  1. 1.Department of Psychosomatic MedicineKansai Medical UniversityHirakata-shi, OsakaJapan
  2. 2.Department of Psychosomatic MedicineNishi Kyoto HospitalNishikyo-ku, KyotoJapan

Personalised recommendations