Advertisement

Applied Psychophysiology and Biofeedback

, Volume 40, Issue 2, pp 107–115 | Cite as

Self-Regulation of Breathing as a Primary Treatment for Anxiety

  • Ravinder Jerath
  • Molly W. Crawford
  • Vernon A. Barnes
  • Kyler Harden
Article

Abstract

Understanding the autonomic nervous system and homeostatic changes associated with emotions remains a major challenge for neuroscientists and a fundamental prerequisite to treat anxiety, stress, and emotional disorders. Based on recent publications, the inter-relationship between respiration and emotions and the influence of respiration on autonomic changes, and subsequent widespread membrane potential changes resulting from changes in homeostasis are discussed. We hypothesize that reversing homeostatic alterations with meditation and breathing techniques rather than targeting neurotransmitters with medication may be a superior method to address the whole body changes that occur in stress, anxiety, and depression. Detrimental effects of stress, negative emotions, and sympathetic dominance of the autonomic nervous system have been shown to be counteracted by different forms of meditation, relaxation, and breathing techniques. We propose that these breathing techniques could be used as first-line and supplemental treatments for stress, anxiety, depression, and some emotional disorders.

Keywords

Autonomic nervous system Stress Anxiety Slow deep breathing Membrane potential 

Notes

Conflict of interest

No funding was received for this article. There is no conflict of interest to report.

References

  1. Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans. BioFactors, 26(3), 201–208.PubMedGoogle Scholar
  2. Agte, V. V., & Chiplonkar, S. A. (2008). Sudarshan Kriya yoga for improving antioxidant status and reducing anxiety in adults. Alternative and Complementary Therapies, 14(2), 96–100. doi: 10.1089/act.2008.14204.Google Scholar
  3. Alberts, B., Amodio, J., Lewis J., Raff, M., K., Roberts, K., Walter, P. (2002). The mitochondrion. Molecular biology of the cell (4th edn). New York: Garland Science.Google Scholar
  4. Bernardi, L., Spadacini, G., Bellwon, J., Hajric, R., Roskamm, H., & Frey, A. W. (1998). Effect of breathing rate on oxygen saturation and exercise performance in chronic heart failure. Lancet, 351(9112), 1308–1311. doi: 10.1016/s0140-6736(97)10341-5.PubMedGoogle Scholar
  5. Bhimani, N. T., Kulkarni, N. B., Kowale, A., & Salvi, S. (2011). Effect of Pranayama on stress and cardiovascular autonomic function. Indian Journal of Physiology and Pharmacology, 55(4), 370–377.PubMedGoogle Scholar
  6. Bilo, G., Revera, M., Bussotti, M., Bonacina, D., Styczkiewicz, K., Caldara, G., et al. (2012). Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS One, 7(11), e49074. doi: 10.1371/journal.pone.0049074.PubMedCentralPubMedGoogle Scholar
  7. Brown, R. P., & Gerbarg, P. L. (2005a). Sudarshan kriya yogic breathing in the treatment of stress, anxiety, and depression. Part II—Clinical applications and guidelines. Journal of Alternative and Complementary Medicine, 11(4), 711–717. doi: 10.1089/acm.2005.11.711.Google Scholar
  8. Brown, R. P., & Gerbarg, P. L. (2005b). Sudarshan Kriya yogic breathing in the treatment of stress, anxiety, and depression: Part I—Neurophysiologic model. Journal of Alternative and Complementary Medicine, 11(1), 189–201. doi: 10.1089/acm.2005.11.189.Google Scholar
  9. Buffett-Jerrott, S. E., & Stewart, S. H. (2002). Cognitive and sedative effects of benzodiazepine use. Current Pharmaceutical Design, 8(1), 45–58.PubMedGoogle Scholar
  10. Bujatti, M., & Riederer, P. (1976). Serotonin, noradrenaline, dopamine metabolites in transcendental meditation-technique. Journal of Neural Transmission, 39(3), 257–267.PubMedGoogle Scholar
  11. Cacioppo, J. T., Bernston, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. (2000). The psychophysiology of emotion (2nd ed.). New York: Guilford Press.Google Scholar
  12. Campbell, H. A., & Egginton, S. (2007). The vagus nerve mediates cardio-respiratory coupling that changes with metabolic demand in a temperate nototheniod fish. Journal of Experimental Biology, 210(Pt 14), 2472–2480. doi: 10.1242/jeb.003822.PubMedGoogle Scholar
  13. Colleoni, F., Padmanabhan, N., Yung, H. W., Watson, E. D., Cetin, I., Tissot van Patot, M. C., et al. (2013). Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: A role for miRNA-210 and protein synthesis inhibition. PLoS One, 8(1), e55194. doi: 10.1371/journal.pone.0055194.PubMedCentralPubMedGoogle Scholar
  14. Cowings, P. S., Suter, S., Toscano, W. B., Kamiya, J., & Naifeh, K. (1986). General autonomic components of motion sickness. Psychophysiology, 23(5), 542–551.PubMedGoogle Scholar
  15. Cysarz, D., & Bussing, A. (2005). Cardiorespiratory synchronization during Zen meditation. European Journal of Applied Physiology, 95(1), 88–95. doi: 10.1007/s00421-005-1379-3.PubMedGoogle Scholar
  16. Czyzyk-Krzeska, M. F., & Trzebski, A. (1990). Respiratory-related discharge pattern of sympathetic nerve activity in the spontaneously hypertensive rat. Journal of Physiology, 426, 355–368.PubMedCentralPubMedGoogle Scholar
  17. Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15, 353–375. doi: 10.1146/annurev.ne.15.030192.002033.PubMedGoogle Scholar
  18. Delmonte, M. M. (1984). Physiological responses during meditation and rest. Biofeedback and Self Regulation, 9(2), 181–200.PubMedGoogle Scholar
  19. Dempsey, J. A., Sheel, A. W., St Croix, C. M., & Morgan, B. J. (2002). Respiratory influences on sympathetic vasomotor outflow in humans. Respiratory Physiology and Neurobiology, 130(1), 3–20.PubMedGoogle Scholar
  20. Desbordes, G., Negi, L. T., Pace, T. W. W., Wallace, B. A., Raison, C. L., & Schwartz, E. L. (2012). Effects of mindful-attention and compassion meditation training on amygdala response to emotional stimuli in an ordinary, non-meditative state. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2012.00292.PubMedCentralPubMedGoogle Scholar
  21. Descilo, T., Vedamurtachar, A., Gerbarg, P. L., Nagaraja, D., Gangadhar, B. N., Damodaran, B., et al. (2010). Effects of a yoga breath intervention alone and in combination with an exposure therapy for post-traumatic stress disorder and depression in survivors of the 2004 South-East Asia tsunami. Acta Psychiatrica Scandinavica, 121(4), 289–300. doi: 10.1111/j.1600-0447.2009.01466.x.PubMedGoogle Scholar
  22. Dick, T. E., Baekey, D. M., Paton, J. F., Lindsey, B. G., & Morris, K. F. (2009). Cardio-respiratory coupling depends on the pons. Respiratory Physiology and Neurobiology, 168(1–2), 76–85. doi: 10.1016/j.resp.2009.07.009.PubMedGoogle Scholar
  23. DiMicco, J. A., Gale, K., Hamilton, B., & Gillis, R. A. (1979). GABA receptor control of parasympathetic outflow to heart: Characterization and brainstem localization. Science, 204(4397), 1106–1109.PubMedGoogle Scholar
  24. Everly, G., Jr., & Lating, J. (2013). Voluntary control of respiration patterns. A clinical guide to the treatment of the human stress response (pp. 223–235). Springer: New York.Google Scholar
  25. Fieni, F., Parkar, A., Misgeld, T., Kerschensteiner, M., Lichtman, J. W., Pasinelli, P., & Trotti, D. (2010). Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria. Journal of Biological Chemistry, 285(35), 27411–27417. doi: 10.1074/jbc.M110.131243.PubMedCentralPubMedGoogle Scholar
  26. Frank, J. G., & Mendelowitz, D. (2012). Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network. PLoS One, 7(5), e36459. doi: 10.1371/journal.pone.0036459.PubMedCentralPubMedGoogle Scholar
  27. Gerbarg, P. L., & Brown, R. P. (2005). Yoga: A breath of relief for Hurricane Katrina refugees. Current Psychiatry, 4, 55–67.Google Scholar
  28. Gnaiger, E., & Kuznetsov, A. V. (2002). Mitochondrial respiration at low levels of oxygen and cytochrome c. Biochemical Society Transactions, 30(2), 252–258.PubMedGoogle Scholar
  29. Goddard, A. W., Mason, G. F., Almai, A., Rothman, D. L., Behar, K. L., Petroff, O. A., et al. (2001). Reductions in occipital cortex GABA levels in panic disorder detected with 1 h-magnetic resonance spectroscopy. Archives of General Psychiatry, 58(6), 556–561.PubMedGoogle Scholar
  30. Goldin, P. R., & Gross, J. J. (2010). Effects of mindfulness-based stress reduction (MBSR) on emotion regulation in social anxiety disorder. Emotion, 10(1), 83–91. doi: 10.1037/a0018441.PubMedCentralPubMedGoogle Scholar
  31. Gomez, P., Stahel, W. A., & Danuser, B. (2004). Respiratory responses during affective picture viewing. Biological Psychology, 67(3), 359–373. doi: 10.1016/j.biopsycho.2004.03.013.PubMedGoogle Scholar
  32. Guglietti, C. L., Daskalakis, Z. J., Radhu, N., Fitzgerald, P. B., & Ritvo, P. (2013). Meditation-related increases in GABAB modulated cortical inhibition. Brain Stimulation, 6(3), 397–402. doi: 10.1016/j.brs.2012.08.005.PubMedGoogle Scholar
  33. Gupta, P. K., Kumar, M., Kumari, R., & Deo, J. (2010). Anuloma-viloma pranayama and anxiety and depression among the aged. Journal of the Indian Academy of Applied Psychology, 36(1), 159–164.Google Scholar
  34. Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 20(2), 78–84.PubMedGoogle Scholar
  35. Hoffman, J. W., Benson, H., Arns, P. A., Stainbrook, G. L., Landsberg, G. L., Young, J. B., & Gill, A. (1982). Reduced sympathetic nervous system responsivity associated with the relaxation response. Science, 215(4529), 190–192.PubMedGoogle Scholar
  36. Iglesias, S. L., Azzara, S., Argibay, J. C., Arnaiz, M. L., de Valle Carpineta, M., Granchetti, H., & Lagomarsino, E. (2012). Psychological and physiological response of students to different types of stress management programs. American Journal of Health Promotion, 26(6), e149–e158. doi: 10.4278/ajhp.110516-QUAL-199.PubMedGoogle Scholar
  37. Infante, J. R., Torres-Avisbal, M., Pinel, P., Vallejo, J. A., Peran, F., Gonzalez, F., et al. (2001). Catecholamine levels in practitioners of the transcendental meditation technique. Physiology and Behavior, 72(1–2), 141–146.PubMedGoogle Scholar
  38. Innes, K. E., & Selfe, T. K. (2014). Meditation as a therapeutic intervention for adults at risk for Alzheimer's disease - potential benefits and underlying mechanisms. Frontiers in Psychiatry. doi: 10.3389/fpsyt.2014.00040.PubMedCentralPubMedGoogle Scholar
  39. Isoardi, N. A., Bertotto, M. E., Martijena, I. D., Molina, V. A., & Carrer, H. F. (2007). Lack of feedback inhibition on rat basolateral amygdala following stress or withdrawal from sedative-hypnotic drugs. European Journal of Neuroscience, 26(4), 1036–1044. doi: 10.1111/j.1460-9568.2007.05714.x.PubMedGoogle Scholar
  40. Isu, N., Koo, J., & Takahashi, N. (1987). Changes of skin potential level and of skin resistance level corresponding to lasting motion discomfort. Aviation, Space and Environmental Medicine, 58(2), 136–142.Google Scholar
  41. Jacobs, G. D. (2001). Clinical applications of the relaxation response and mind-body interventions. Journal of Alternative and Complementary Medicine, 7(Suppl 1), S93–101.Google Scholar
  42. Janakiramaiah, N., Gangadhar, B. N., Naga Venkatesha Murthy, P. J., Harish, M. G., Subbakrishna, D. K., & Vedamurthachar, A. (2000). Antidepressant efficacy of sudarshan kriya yoga (SKY) in melancholia: a randomized comparison with electroconvulsive therapy (ECT) and imipramine. Journal of Affective Disorders, 57(1–3), 255–259.PubMedGoogle Scholar
  43. Jerath, R., & Barnes, V. A. (2009). Augmentation of mind-body therapy and role of deep slow breathing. Journal of Complementary and Integrative Medicine. doi: 10.2202/1553-3840.1299.
  44. Jerath, R., Barnes, V. A., & Crawford, M. W. (2014). Mind-body response and neurophysiological changes during stress and meditation: central role of homeostasis. Journal of Biological Regulators and Homeostatic Agents, 28(4), 545–554.PubMedGoogle Scholar
  45. Jerath, R., Barnes, V. A., Dillard-Wright, D., Jerath, S., & Hamilton, B. (2012). Dynamic change of awareness during meditation techniques: Neural and physiological correlates. Frontiers Human Neuroscience, 6, 131. doi: 10.3389/fnhum.2012.00131.Google Scholar
  46. Jerath, R., Crawford, M. W., Barnes, V. A., & Harden, K. (2015). Widespread depolarization during expiration: A source of respiratory drive? Medical Hypotheses84(1), 31–37. doi: 10.1016/j.mehy.2014.11.010.PubMedGoogle Scholar
  47. Jerath, R., Edry, J. W., Barnes, V. A., & Jerath, V. (2006). Physiology of long pranayamic breathing: Neural respiratory elements may provide a mechanism that explains how slow deep breathing shifts the autonomic nervous system. Medical Hypotheses, 67(3), 566–571. doi: 10.1016/j.mehy.2006.02.042.PubMedGoogle Scholar
  48. Jerath, R., Harden, K., Crawford, M., Barnes, V. A., & Jensen, M. (2014). Role of cardiorespiratory synchronization and sleep physiology: Effects on membrane potential in the restorative functions of sleep. Sleep Medicine,. doi: 10.1016/j.sleep.2013.10.017.PubMedGoogle Scholar
  49. Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical Biological Engineering Computing, 42(3), 419–427.PubMedGoogle Scholar
  50. Kim, S. H., Schneider, S. M., Bevans, M., Kravitz, L., Mermier, C., Qualls, C., & Burge, M. R. (2013). PTSD symptom reduction with mindfulness-based stretching and deep breathing exercise: Randomized controlled clinical trial of efficacy. Journal of Clinical Endocrinology and Metabolism, 98(7), 2984–2992. doi: 10.1210/jc.2012-3742.PubMedCentralPubMedGoogle Scholar
  51. Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J., & Lou, H. C. (2002). Increased dopamine tone during meditation-induced change of consciousness. Brain Research. Cognitive Brain Research, 13(2), 255–259.PubMedGoogle Scholar
  52. Kmita, H., & Stobienia, O. (2006). The VDAC channel as the mitochondria function regulator. Postepy Biochemii, 52(2), 129–136.PubMedGoogle Scholar
  53. Kondo, T., Kobayashi, I., Hirokawa, Y., Ohta, Y., Yamabayashi, H., & Arita, H. (1993). Centrally driven slow oscillating potential of extrathoracic trachea. Journal of Applied Physiology (1985), 74(3), 1066–1072.Google Scholar
  54. Kop, W. J., Synowski, S. J., Newell, M. E., Schmidt, L. A., Waldstein, S. R., & Fox, N. A. (2011). Autonomic nervous system reactivity to positive and negative mood induction: The role of acute psychological responses and frontal electrocortical activity. Biological Psychology, 86(3), 230–238. doi: 10.1016/j.biopsycho.2010.12.003.PubMedCentralPubMedGoogle Scholar
  55. Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. doi: 10.1016/j.biopsycho.2010.03.010.PubMedGoogle Scholar
  56. Kulkarni, S., O’Farrell, I., Erasi, M., & Kochar, M. S. (1998). Stress and hypertension. WMJ: Official Publication of the State, 97(11), 34–38.Google Scholar
  57. Lader, M. (1994). Anxiolytic drugs: Dependence, addiction and abuse. European Neuropsychopharmacology, 4(2), 85–91.PubMedGoogle Scholar
  58. Laurino, R. A., Barnabe, V., Saraiva-Romanholo, B. M., Stelmach, R., Cukier, A., & Nunes Mdo, P. (2012). Respiratory rehabilitation: A physiotherapy approach to the control of asthma symptoms and anxiety. Clinics (Sao Paulo), 67(11), 1291–1297.Google Scholar
  59. Leung, R. S., Floras, J. S., & Bradley, T. D. (2006). Respiratory modulation of the autonomic nervous system during Cheyne-Stokes respiration. Canadian Journal of Physiology and Pharmacology, 84(1), 61–66. doi: 10.1139/y05-145.PubMedGoogle Scholar
  60. Liu, Q.-H., Zheng, Y.-M., Korde, A. S., Yadav, V. R., Rathore, R., Wess, J., & Wang, Y.-X. (2009). Membrane depolarization causes a direct activation of G protein-coupled receptors leading to local Ca2+ release in smooth muscle. Proceedings of the National Academy of Sciences, 106(27), 11418–11423. doi: 10.1073/pnas.0813307106.Google Scholar
  61. Lo, P. C., & Chang, C. H. (2013). Effects of long-term dharma-chan meditation on cardiorespiratory synchronization and HRV behavior. Rejuvenation Research, 16(2), 115–123.PubMedCentralPubMedGoogle Scholar
  62. Malliani, A. (1999). The pattern of sympathovagal balance explored in the frequency domain. Physiology, 14(3), 111–117.Google Scholar
  63. Manzoni, G., Pagnini, F., Castelnuovo, G., & Molinari, E. (2008). Relaxation training for anxiety: A ten-years systematic review with meta-analysis. BMC Psychiatry, 8(1), 41.PubMedCentralPubMedGoogle Scholar
  64. Marshall, R. S., Basilakos, A., Williams, T., & Love-Myers, K. (2013). Exploring the benefits of unilateral nostril breathing practice post-stroke: Attention, language, spatial abilities, depression, and anxiety. Journal of Alternative and Complementary Medicine,. doi: 10.1089/acm.2013.0019.Google Scholar
  65. Masaoka, Y., & Homma, I. (2000). The source generator of respiratory-related anxiety potential in the human brain. Neuroscience Letters, 283(1), 21–24.PubMedGoogle Scholar
  66. Masaoka, Y., & Homma, I. (2001). The effect of anticipatory anxiety on breathing and metabolism in humans. Respiration Physiology, 128(2), 171–177. doi: 10.1016/S0034-5687(01)00278-X.PubMedGoogle Scholar
  67. McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71(4), 78.PubMedCentralPubMedGoogle Scholar
  68. Meyer, J. S., & Quenzer, L. F. (2005). Psychopharmacology: Drugs, the brain, and behavior. Sunderland, MA: Sinauer Associates.Google Scholar
  69. Murik, S. E. (2005). Polarization theory of motivations, emotions and attention. Bulletin of Eastern-Siberian Scientific Center SB RAMS, 7, 167–174.Google Scholar
  70. Musazzi, L., Milanese, M., Farisello, P., Zappettini, S., Tardito, D., Barbiero, V. S., et al. (2010). Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: The dampening action of antidepressants. PLoS One, 5(1), e8566. doi: 10.1371/journal.pone.0008566.PubMedCentralPubMedGoogle Scholar
  71. Naveen, G. H., Rao, M. G., Vishal, V., Thirthalli, J., Varambally, S., & Gangadhar, B. N. (2013). Development and feasibility of yoga therapy module for out-patients with depression in India. Indian Journal of Psychiatry, 55(Suppl 3), S350–S356. doi: 10.4103/0019-5545.116305.PubMedCentralPubMedGoogle Scholar
  72. Nemati, A. (2013). The effect of pranayama on test anxiety and test performance. International Journal of Yoga, 6(1), 55–60. doi: 10.4103/0973-6131.105947.PubMedCentralPubMedGoogle Scholar
  73. Nesse, R. M., & Berridge, K. C. (1997). Psychoactive drug use in evolutionary perspective. Science, 278(5335), 63–66. doi: 10.1126/science.278.5335.63.PubMedGoogle Scholar
  74. Newberg, A., Travis, F., Wintering, N., Nidich, S., Alavi, A., & Schneider, R. (2006). Cerebral 416 glucose metabolic changes associated with Transcendental Meditation practice. Paper presented at the neural imaging, Miami, Fl.Google Scholar
  75. Ospina, M. B., Bond, K., Karkhaneh, M., Tjosvold, L., Vandermeer, B., Liang, Y., et al. (2007). Meditation practices for health: state of the research. Evid Rep Technol Assess (Full Rep)(155), 1–263.Google Scholar
  76. Padival, M., Quinette, D., & Rosenkranz, J. A. (2013). Effects of repeated stress on excitatory drive of basal amygdala neurons in vivo. Neuropsychopharmacology, 38(9), 1748–1762. doi: 10.1038/npp.2013.74.PubMedCentralPubMedGoogle Scholar
  77. Pal, G. K., Velkumary, S., & Madanmohan, (2004). Effect of short-term practice of breathing exercises on autonomic functions in normal human volunteers. Indian Journal of Medical Research, 120(2), 115–121.PubMedGoogle Scholar
  78. Patin, A., & Hurlemann, R. (2011). Modulating amygdala responses to emotion: Evidence from pharmacological fMRI. Neuropsychologia, 49(4), 706–717. doi: 10.1016/j.neuropsychologia.2010.10.004.PubMedGoogle Scholar
  79. Peupelmann, J., Boettger, M. K., Ruhland, C., Berger, S., Ramachandraiah, C. T., Yeragani, V. K., & Bär, K.-J. (2009). Cardio-respiratory coupling indicates suppression of vagal activity in acute schizophrenia. Schizophrenia Research, 112(1–3), 153–157. doi: 10.1016/j.schres.2009.03.042.PubMedGoogle Scholar
  80. Porta, A., Guzzetti, S., Montano, N., Pagani, M., Somers, V., Malliani, A., et al. (2000). Information domain analysis of cardiovascular variability signals: Evaluation of regularity, synchronisation and co-ordination. Medical and Biological Engineering and Computing, 38(2), 180–188.PubMedGoogle Scholar
  81. Ranabir, S., & Reetu, K. (2011). Stress and hormones. Indian Journal of Endocrinology and Metabolism, 15(1), 18–22. doi: 10.4103/2230-8210.77573.PubMedCentralPubMedGoogle Scholar
  82. Reznikov, L. R., Grillo, C. A., Piroli, G. G., Pasumarthi, R. K., Reagan, L. P., & Fadel, J. (2007). Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment. European Journal of Neuroscience, 25(10), 3109–3114. doi: 10.1111/j.1460-9568.2007.05560.x.PubMedGoogle Scholar
  83. Sato, T., Nishishita, K., Kato, Y., Okada, Y., & Toda, K. (2006). Tonic activity of parasympathetic efferent nerve fibers hyperpolarizes the resting membrane potential of frog taste cells. Chemical Senses, 31(4), 307–313. doi: 10.1093/chemse/bjj034.PubMedGoogle Scholar
  84. Schafer, C., Rosenblum, M. G., Kurths, J., & Abel, H. H. (1998). Heartbeat synchronized with ventilation. Nature, 392(6673), 239–240. doi: 10.1038/32567.PubMedGoogle Scholar
  85. Seals, D. R., Suwarno, N. O., & Dempsey, J. A. (1990). Influence of lung volume on sympathetic nerve discharge in normal humans. Circulation Research, 67(1), 130–141. doi: 10.1161/01.res.67.1.130.PubMedGoogle Scholar
  86. Sequeira, H., Hot, P., Silvert, L., & Delplanque, S. (2009). Electrical autonomic correlates of emotion. International Journal of Psychophysiology, 71(1), 50–56. doi: 10.1016/j.ijpsycho.2008.07.009.PubMedGoogle Scholar
  87. Song, H. S., & Lehrer, P. M. (2003). The effects of specific respiratory rates on heart rate and heart rate variability. Applied Psychophysiology and Biofeedback, 28(1), 13–23.PubMedGoogle Scholar
  88. St Croix, C. M., Satoh, M., Morgan, B. J., Skatrud, J. B., & Dempsey, J. A. (1999). Role of respiratory motor output in within-breath modulation of muscle sympathetic nerve activity in humans. Circulation Research, 85(5), 457–469.PubMedGoogle Scholar
  89. Starcevic, V. (2012). Benzodiazepines for anxiety disorders: Maximising the benefits and minimising the risks. Advances in Psychiatric Treatment, 18(4), 250–258. doi: 10.1192/apt.bp.110.008631.Google Scholar
  90. Storm, H., Myre, K., Rostrup, M., Stokland, O., Lien, M. D., & Raeder, J. C. (2002). Skin conductance correlates with perioperative stress. Acta Anaesthesiologica Scandinavica, 46(7), 887–895.PubMedGoogle Scholar
  91. Streeter, C. C., Gerbarg, P. L., Saper, R. B., Ciraulo, D. A., & Brown, R. P. (2012). Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Medical Hypotheses, 78(5), 571–579. doi: 10.1016/j.mehy.2012.01.021.PubMedGoogle Scholar
  92. Streeter, C. C., Jensen, J. E., Perlmutter, R. M., Cabral, H. J., Tian, H., Terhune, D. B., et al. (2007). Yoga Asana sessions increase brain GABA levels: A pilot study. Journal of Alternative and Complementary Medicine, 13(4), 419–426. doi: 10.1089/acm.2007.6338.Google Scholar
  93. Stubenrauch, J. M. (2011). Meditation as good as medication? AJN The American Journal of Nursing, 111(3), 16. doi: 10.1097/1010.1097/1001.NAJ.0000395224.0000379799.0000395232.Google Scholar
  94. Sztajzel, J. (2004). Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Medical Weekly, 134(35–36), 514–522.PubMedGoogle Scholar
  95. Taylor, V. A., Grant, J., Daneault, V., Scavone, G., Breton, E., Roffe-Vidal, S., et al. (2011). Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. Neuroimage, 57(4), 1524–1533. doi: 10.1016/j.neuroimage.2011.06.001.PubMedGoogle Scholar
  96. Telles, S., Nagarathna, R., & Nagendra, H. R. (1995). Autonomic changes during “OM” meditation. Indian Journal of Physiology and Pharmacology, 39(4), 418–420.PubMedGoogle Scholar
  97. Topchiy, I., Radulovacki, M., Waxman, J., & Carley, D. W. (2011). Impact of the vagal feedback on cardiorespiratory coupling in anesthetized rats. Respiratory Physiology and Neurobiology, 175(3), 375–382. doi: 10.1016/j.resp.2010.12.017.PubMedCentralPubMedGoogle Scholar
  98. Vandana, B., Vaidyanathan, K., Saraswathy, L. A., Sundaram, K. R., & Kumar, H. (2011). Impact of integrated amrita meditation technique on adrenaline and cortisol levels in healthy volunteers. Evidence Based Complement Alternative Medicine, 2011, 379645. doi: 10.1155/2011/379645.Google Scholar
  99. Vrijkotte, T. G. M., van Doornen, L. J. P., & de Geus, E. J. C. (2000). Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension, 35(4), 880–886. doi: 10.1161/01.hyp.35.4.880.PubMedGoogle Scholar
  100. Wahlestedt, C., Pich, E., Koob, G., Yee, F., & Heilig, M. (1993). Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science, 259(5094), 528–531. doi: 10.1126/science.8380941.PubMedGoogle Scholar
  101. Wallace, R. K. (1970). Physiological effects of transcendental meditation. Science, 167(3926), 1751–1754.PubMedGoogle Scholar
  102. Wallace, R. K., Benson, H., & Wilson, A. F. (1971). A wakeful hypometabolic physiologic state. American Journal of Physiology, 221(3), 795–799.PubMedGoogle Scholar
  103. Wijsman, J., Grundlehner, B., Penders, J., & Hermens, H. (2010). Trapezius muscle EMG as predictor of mental stress. Paper presented at the Wireless Health 2010, San Diego, California.Google Scholar
  104. Wood, C. (1993). Mood change and perceptions of vitality: A comparison of the effects of relaxation, visualization and yoga. Journal of the Royal Society of Medicine, 86(5), 254–258.PubMedCentralPubMedGoogle Scholar
  105. Wu, L. J., Gao, Z., Chen, B., Koval, O. M., Singh, M. V., Guan, X., et al. (2009). Calmodulin kinase II is required for fight or flight sinoatrial node physiology. Proceedings of the National Academy of Sciences United States of America, 106(14), 5972–5977. doi: 10.1073/pnas.0806422106.Google Scholar
  106. Wu, L. J., Ko, S. W., Toyoda, H., Zhao, M. G., Xu, H., Vadakkan, K. I., et al. (2007). Increased anxiety-like behavior and enhanced synaptic efficacy in the amygdala of GluR5 knockout mice. PLoS One, 2(1), e167. doi: 10.1371/journal.pone.0000167.PubMedCentralPubMedGoogle Scholar
  107. Wu, S. D., & Lo, P. C. (2010). Cardiorespiratory phase synchronization during normal rest and inward-attention meditation. International Journal of Cardiology, 141(3), 325–328. doi: 10.1016/j.ijcard.2008.11.137.PubMedGoogle Scholar
  108. Youngstedt, S. D., & Kripke, D. F. (2007). Does bright light have an anxiolytic effect?—An open trial. BMC Psychiatry, 7, 62. doi: 10.1186/1471-244x-7-62.PubMedCentralPubMedGoogle Scholar
  109. Zagon, A., & Kemeny, A. A. (2000). Slow hyperpolarization in cortical neurons: A possible mechanism behind vagus nerve simulation therapy for refractory epilepsy? Epilepsia, 41(11), 1382–1389.PubMedGoogle Scholar
  110. Zhang, J., Yu, X., & Xie, D. (2010). Effects of mental tasks on the cardiorespiratory synchronization. Respiratory Physiology and Neurobiology, 170(1), 91–95. doi: 10.1016/j.resp.2009.11.003.PubMedGoogle Scholar
  111. Zope, S. A., & Zope, R. A. (2013). Sudarshan kriya yoga: Breathing for health. International Journal of Yoga, 6(1), 4–10. doi: 10.4103/0973-6131.105935.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Augusta Women’s CenterAugustaUSA
  2. 2.Georgia Prevention InstituteGeorgia Regents UniversityAugustaUSA

Personalised recommendations