Advertisement

Applied Psychophysiology and Biofeedback

, Volume 39, Issue 3–4, pp 269–277 | Cite as

Use of Controlled Diaphragmatic Breathing for the Management of Motion Sickness in a Virtual Reality Environment

  • Matthew Edward Brannon Russell
  • Brittney Hoffman
  • Sarah Stromberg
  • Charles R. Carlson
Article

Abstract

Evidence indicates that activation of the parasympathetic nervous system (PNS) suppresses physiological responses associated with motion sickness. Research also shows paced breathing increases PNS activation; the current study examines the use of paced diaphragmatic breathing (DB) training to quell motion sickness symptoms. Healthy participants (N = 60) were pre-screened for motion sickness susceptibility. Participants were then randomly assigned to either a control condition, focusing on environmental awareness, or to an experimental condition implementing paced DB. Following this, participants were exposed to a virtual reality (VR) motion sickness experience, while heart rate variability, breathing rate (RPM), and motion sickness ratings were collected. Results demonstrated participants in the DB condition had higher PNS activation and reported fewer motion sickness symptoms during the VR experience than the participants in the control condition. Results suggest that the DB protocol can be used to significantly increase PNS tone and decrease the development of motion sickness symptoms.

Keywords

Breathing rate Heart rate variability Motion sickness Diaphragmatic breathing Parasympathetic nervous system 

References

  1. Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648.PubMedCrossRefGoogle Scholar
  2. Bowins, B. (2010). Motion sickness: A negative reinforcement model. Brain Research Bulletin, 81(1), 7–11.PubMedCrossRefGoogle Scholar
  3. Carlson, C. R., Bertrand, P. M., Ehrlich, A. D., Maxwell, A. W., & Burton, R. G. (2000). Physical self-regulation training for the management of temporomandibular disorders. Journal of Orofacial Pain, 15(1), 47–55.Google Scholar
  4. Cottin, F., Médigue, C., & Papelier, Y. (2008). Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. American Journal of Physiology-Heart and Circulatory Physiology, 295(3), H1150–H1155.PubMedCrossRefGoogle Scholar
  5. Donchin, Y., Feld, J. M., & Porges, S. W. (1985). Respiratory sinus arrhythmia during recovery from isoflurane—nitrous oxide anesthesia. Anesthesia and Analgesia, 64(8), 811–815.PubMedCrossRefGoogle Scholar
  6. Eckberg, D. L. (1983). Human sinus arrhythmia as an index of vagal cardiac outflow. Journal of Applied Physiology, 54(4), 961–966.PubMedGoogle Scholar
  7. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160.PubMedCrossRefGoogle Scholar
  8. Gianaros, P. J., Muth, E. R., Mordkoff, J. T., Levine, M. E., & Stern, R. M. (2001). A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviation, Space and Environmental Medicine, 72(2), 115.Google Scholar
  9. Gianaros, P. J., Quigley, K. S., Muth, E. R., Levine, M. E., Vasko, R. C., Jr., & Stern, R. M. (2003). Relationship between temporal changes in cardiac parasympathetic activity and motion sickness severity. Psychophysiology, 40(1), 39–44.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Golding, J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual Differences, 41(2), 237–248.CrossRefGoogle Scholar
  11. Grossman, P. (1983). Respiration, stress, and cardiovascular function. Psychophysiology, 20(3), 284–300.PubMedCrossRefGoogle Scholar
  12. Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: The need for respiratory control. Psychophysiology, 28(2), 201–216.PubMedCrossRefGoogle Scholar
  13. Grossman, P., & Svebak, S. (1987). Respiratory sinus arrhythmia as an index of parasympathetic cardiac control during active coping. Psychophysiology, 24(2), 228–235.PubMedCrossRefGoogle Scholar
  14. Hamdan, M. H., Joglar, J. A., Page, R. L., Zagrodzky, J. D., Sheehan, C. J., & Wasmund, S. L. (1999). Baroreflex gain predicts blood pressure recovery during simulated ventricular tachycardia in humans. Circulation, 100(4), 381–386.PubMedCrossRefGoogle Scholar
  15. Heer, M., & Paloski, W. H. (2006). Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience, 129(1), 77–79.PubMedCrossRefGoogle Scholar
  16. Hu, S., Grant, W. F., Stern, R. M., & Koch, K. L. (1991). Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviation, Space, and Environmental Medicine, 62, 308–314.Google Scholar
  17. Jerath, R., Edry, J. W., Barnes, V. A., & Jerath, V. (2006). Physiology of long pranayamic breathing: Neural respiratory elements may provide a mechanism that explains how slow deep breathing shifts the autonomic nervous system. Medical Hypotheses, 67(3), 566–571.PubMedCrossRefGoogle Scholar
  18. Jokerst, M. D., Gatto, M., Fazio, R., Stern, R. M., & Koch, K. L. (1999). Slow deep breathing prevents the development of tachygastria and symptoms of motion sickness. Aviation, Space and Environmental Medicine, 70(12), 1189–1192.Google Scholar
  19. Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., et al. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46(4), 714–718.PubMedCrossRefGoogle Scholar
  20. Kulur, A. B., Haleagrahara, N., Adhikary, P., & Jeganathan, P. S. (2009). Effect of diaphragmatic breathing on heart rate variability in ischemic heart disease with diabetes. Arquivos Brasileiros de Cardiologia, 92(6), 457–463.CrossRefGoogle Scholar
  21. Lehrer, P., Karavidas, M. K., Lu, S. E., Coyle, S. M., Oikawa, L. O., Macor, M., et al. (2010a). Voluntarily produced increases in heart rate variability modulate autonomic effects of endotoxin induced systemic inflammation: An exploratory study. Applied Psychophysiology and Biofeedback, 35(4), 303–315.PubMedCrossRefGoogle Scholar
  22. Lehrer, P., Karavidas, M., Lu, S. E., Vaschillo, E., Vaschillo, B., & Cheng, A. (2010b). Cardiac data increase association between self-report and both expert ratings of task load and task performance in flight simulator tasks: An exploratory study. International Journal of Psychophysiology, 76(2), 80–87.PubMedCrossRefGoogle Scholar
  23. Lien, H. C., Sun, W. M., Chen, Y. H., Kim, H., Hasler, W., & Owyang, C. (2003). Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. American Journal of Physiology-Gastrointestinal and Liver Physiology, 284(3), G481–G489.PubMedGoogle Scholar
  24. McCabe, P. M., Yongue, B. G., Ackles, P. K., & Porges, S. W. (1985). Changes in heart period, heart-period variability, and a spectral analysis estimate of respiratory sinus arrhythmia in response to pharmacological manipulations of the baroreceptor reflex in cats. Psychophysiology, 22(2), 195–203.PubMedCrossRefGoogle Scholar
  25. Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., et al. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59(2), 178–193.PubMedCrossRefGoogle Scholar
  26. Paule, M. G., Chelonis, J. J., Blake, D. J., & Dornhoffer, J. L. (2004). Effects of drug countermeasures for space motion sickness on working memory in humans. Neurotoxicology and Teratology, 26(6), 825–837.PubMedCrossRefGoogle Scholar
  27. Pyykkö, I., Padoan, S., Schalen, L., Lyttkens, L., Magnusson, M., & Henriksson, N. G. (1985). The effects of TTS-scopolamine, dimenhydrinate, lidocaine, and tocainide on motion sickness, vertigo, and nystagmus. Aviation, Space and Environmental Medicine, 56(8), 777.Google Scholar
  28. Rosenthal, R., & Rosnow, R. L. (1985). Contrast analysis: Focused comparisons in the analysis of variance. Cambridge: Cambridge University Press.Google Scholar
  29. Sang, F. D., Billar, J. P., Golding, J. F., & Gresty, M. A. (2003). Behavioral methods of alleviating motion sickness: Effectiveness of controlled breathing and a music audiotape. Journal of Travel Medicine, 10(2), 108–111.CrossRefGoogle Scholar
  30. Sherman, C. R. (2002). Motion sickness: Review of causes and preventive strategies. Journal of travel medicine, 9(5), 251–256.PubMedCrossRefGoogle Scholar
  31. Stoffregen, T. A., Yoshida, K., Villard, S., Scibora, L., & Bardy, B. G. (2010). Stance width influences postural stability and motion sickness. Ecological Psychology, 22(3), 169–191.CrossRefGoogle Scholar
  32. Uijtdehaage, S. H., Stern, R. M., & Koch, K. L. (1992). Effects of eating on vection-induced motion sickness, cardiac vagal tone, and gastric myoelectric activity. Psychophysiology, 29(2), 193–201.PubMedCrossRefGoogle Scholar
  33. Walther, L. E. (2005). Procedures for restoring vestibular disorders. GMS Current Topics in- Otorhinolaryngology, Head and Neck Surgery, 4.Google Scholar
  34. Watcha, M. F., & White, P. F. (1992). Postoperative nausea and vomiting: Its etiology, treatment, and prevention. Anesthesiology, 77(1), 162–184.PubMedCrossRefGoogle Scholar
  35. Wood, C. D., Stewart, J. J., Wood, M. J., Manno, J. E., Manno, B. R., & Mims, M. E. (1990). Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness. Aviation, Space and Environmental Medicine, 61(2), 157–161.Google Scholar
  36. ŽEmaitytė, D., Varoneckas, G., & Sokolov, E. (1984a). Heart rhythm control during sleep. Psychophysiology, 21(3), 279–289.PubMedCrossRefGoogle Scholar
  37. ŽEmaitytė, D., Varoneckas, G., & Sokolov, E. (1984b). Heart rhythm control during sleep in ischemic heart disease. Psychophysiology, 21(3), 290–298.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Matthew Edward Brannon Russell
    • 1
  • Brittney Hoffman
    • 1
  • Sarah Stromberg
    • 1
  • Charles R. Carlson
    • 1
  1. 1.University of KentuckyLexingtonUSA

Personalised recommendations