Applied Psychophysiology and Biofeedback

, Volume 39, Issue 3–4, pp 227–236 | Cite as

The Effects of a Single Session of Upper Alpha Neurofeedback for Cognitive Enhancement: A Sham-Controlled Study

  • C. Escolano
  • M. Navarro-Gil
  • J. Garcia-Campayo
  • J. Minguez
Article

Abstract

The minimization of the non-specific factors of neurofeedback (NF) is an important aspect to further advance in the understanding of the effects of these types of procedures. This paper investigates the NF effects of a single session (25 min) of individual upper alpha enhancement following a sham-controlled experimental design (19 healthy participants). We measured immediate effects after the training and 1-day lasting EEG effects (eyes closed resting state and task-related activity), as well as the event-locked EEG effects during the execution of a mental rotation task. These metrics were computed in trained (upper alpha) and non-trained EEG parameters (lower alpha and lower beta). Several cognitive functions were assessed such as working memory and mental rotation abilities. The NF group showed increased upper alpha power after training in task-related activity (not significantly sustained 1 day after) and higher pre-stimulus power during the mental rotation task. Both groups improved cognitive performance, with a more prominent improvement for the NF group, however a single session seems to be insufficient to yield significant differences between groups. A higher number of training sessions seems necessary to achieve long-lasting effects on the electrophysiology and to enhance the behavioral effects.

Keywords

Neurofeedback Electroencephalogram (EEG) Individual upper alpha Cognitive performance Single session Sham feedback 

Notes

Acknowledgments

This research has been partially supported by Spanish Ministry of Science projects HYPER-CSD2009-00067 and DPI2009-14732-C02-01, DGA-FSE, grupo T04.

References

  1. Alexeeva, M. V., Balios, N. V., Muravlyova, K. B., Sapina, E. V., & Bazanova, O. M. (2012). Training for voluntarily increasing individual upper alpha power as a method for cognitive enhancement. Human Physiology, 38(1), 40–48.CrossRefGoogle Scholar
  2. Başar, E., & Güntekin, B. (2008). A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Research, 1235, 172–193.PubMedCrossRefGoogle Scholar
  3. Brandeis, D. (2011). Neurofeedback training in ADHD: More news on specificity. Clinical Neurophysiology, 122(5), 856–857.PubMedCrossRefGoogle Scholar
  4. Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage, 34(4), 1443–1449.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2013). Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback. International Journal of Psychophysiology, 88(1), 1–16.PubMedCrossRefGoogle Scholar
  6. Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. In International conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston (USA), pp. 2327–2330.Google Scholar
  7. Escolano, C., Olivan, B., Lopez-del-Hoyo, Y., Garcia-Campayo, J., & Minguez J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. In International conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego (USA), pp. 4643–4647.Google Scholar
  8. Escolano, C., Olivan, B., Lopez-del-Hoyo, Y., Garcia-Campayo, J., & Minguez, J. (2013). Upper-alpha neurofeedback training for cognitive enhancement: A single-session study. In Converging clinical and engineering research on neurorehabilitation, Springer, pp. 1281–1286.Google Scholar
  9. Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375, 93–102.PubMedCrossRefGoogle Scholar
  10. Gronwall, D. M. A. (1977). Paced auditory serial-addition task: A measure of recovery from concussion. Perceptual and Motor Skills, 44(2), 367–373.PubMedCrossRefGoogle Scholar
  11. Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44, 124–141.CrossRefGoogle Scholar
  12. Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews, 44, 159–182.CrossRefGoogle Scholar
  13. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30, 1–10.PubMedCrossRefGoogle Scholar
  14. Holmes, A. P., Blair, R., Watson, G., & Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow & Metabolism, 16(1), 7–22.CrossRefGoogle Scholar
  15. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.PubMedCrossRefGoogle Scholar
  16. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195.PubMedCrossRefGoogle Scholar
  17. Klimesch, W., Sauseng, P., & Gerloff, C. (2003). Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. European Journal of Neuroscience, 17(5), 1129–1133.PubMedCrossRefGoogle Scholar
  18. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88.PubMedCrossRefGoogle Scholar
  19. Lezak, M. D. (2004). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
  20. Miranda, J. P., & Valencia, R. R. (1997). English and Spanish versions of a memory test: Word-length effects versus spoken-duration effects. Hispanic Journal of Behavioral Sciences, 19(2), 171–181.CrossRefGoogle Scholar
  21. Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P. I., et al. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83–87.PubMedCrossRefGoogle Scholar
  22. Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686.CrossRefGoogle Scholar
  23. Palva, S., & Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. Trends in Neurosciences, 30(4), 150–158.PubMedCrossRefGoogle Scholar
  24. Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.PubMedCrossRefGoogle Scholar
  25. Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271–276.CrossRefGoogle Scholar
  26. Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.Google Scholar
  27. Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A., et al. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846–1852.PubMedCrossRefGoogle Scholar
  28. Stroop, J. R. (1992). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 121(1), 15.CrossRefGoogle Scholar
  29. Tombaugh, T. N. (2006). A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Archives of Clinical Neuropsychology, 21(1), 53–76.PubMedCrossRefGoogle Scholar
  30. Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. App Psychophysiology and Biofeedback, 30, 347–364.CrossRefGoogle Scholar
  31. Yela, M. (1969). Rotación de figuras macizas [Rotation of solid figures]. Madrid: TEA.Google Scholar
  32. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • C. Escolano
    • 1
  • M. Navarro-Gil
    • 2
  • J. Garcia-Campayo
    • 3
  • J. Minguez
    • 1
    • 2
  1. 1.Aragon Institute of Engineering Research (I3A)ZaragozaSpain
  2. 2.Bit & Brain Technologies SLZaragozaSpain
  3. 3.Aragon Health Sciences Institute (IACS)ZaragozaSpain

Personalised recommendations