Applied Psychophysiology and Biofeedback

, Volume 38, Issue 4, pp 241–255 | Cite as

Utilizing Heartbeat Evoked Potentials to Identify Cardiac Regulation of Vagal Afferents During Emotion and Resonant Breathing

  • Starr MacKinnonEmail author
  • Richard Gevirtz
  • Rollin McCraty
  • Milton Brown


The importance of the bi-directional communication between the heart and brain has been known for over 100 years (Lane et al. in NeuroImage 44:213–222, 2009a, Psychosom Med 2:117–134, 2009b) and plays an important role in many of the prominent theories of psychophysiology today. Utilizing heartbeat evoked potentials (HEPs), we sought to determine whether heart rate variability (HRV) was related to the strength of the connection between the heart and brain. We also hypothesized that differing emotion states would result in differing amplitudes of HEPs. Participants were induced into emotional states with an autobiographical script of their happiest and saddest memory. HEPs were also recorded during diaphragmatic breathing at six breaths per minute. The evoked potentials during the emotional conditions, especially negative emotion were most attenuated. We believe that the signal from the heart to the brain may be filtered by central limbic structures affecting the level of the signal at the cortex. It also appears that HRV affects the strength of HEPs, especially during resonant breathing. Significant neurocardiac gender differences were also present across all conditions. The results of this study support the theory and speculation of many authors who believe vagal afferents play a role in brain function.


Vagal afferents Heart rate variability Resonant breathing Emotion Heartbeat evoked potentials Central autonomic network 


Conflict of interest



  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  2. Andrade, P., Noblesse, L., Temel, Y., Ackermans, L., Lim, L., Steinbusch, H., et al. (2010). Neurostimulatory and ablative treatment options in major depressive disorder: A systematic review. Acta Neurochiugica, 152, 565–577.CrossRefGoogle Scholar
  3. Basco, M. R., Bostic, J. Q., Davies, D., et al. (2000). Methods to improve diagnostic accuracy in a community mental health setting. American Journal of Psychiatry, 157, 1599–1605.CrossRefGoogle Scholar
  4. Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183–214.PubMedCrossRefGoogle Scholar
  5. Berthoud, H. R., & Neuhuber, W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience, 85(1–3), 1–17.PubMedCrossRefGoogle Scholar
  6. Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., et al. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17, 875–887.PubMedCrossRefGoogle Scholar
  7. Britton, J. C., Taylor, S. F., Sudheimer, K. D., & Liberzon, I. (2006). Facial expressions and complex IAPS pictures: Common and differential networks. Neuroimage, 31, 906–919.PubMedCrossRefGoogle Scholar
  8. Carla, L. H., & Hamann, S. (2006). Neural correlates of regulating negative emotions related to moral violations. NeuroImage, 30, 313–324.CrossRefGoogle Scholar
  9. Carney, R. M. (2009). Depression and heart rate variability in patients with coronary heart disease. Cleveland Clinic Journal of Medicine, 76(2), 13–17.CrossRefGoogle Scholar
  10. Carney, R. M., Blumenthal, J. A., Freedland, K. E., Stein, P. K., Howells, W. B., Berkman, L. F., et al. (2005a). Low heart rate variability and the effect of depression on post-myocardial infarction mortality. Archives of Internal Medicine, 165(13), 1486–1491.PubMedCrossRefGoogle Scholar
  11. Carney, R. M., Freedland, K. E., & Veith, K. (2005b). Depression, the autonomic nervous system, and coronary heart disease. Psychosomatic Medicine, 67, 29–33.CrossRefGoogle Scholar
  12. Crawford, L. E., & Cacioppo, J. T. (2002). Learning where to look for danger: Integrating affective and spatial information. Psychological Science, 13, 449–453.PubMedCrossRefGoogle Scholar
  13. Crawford, J. R., & Henry, J. D. (2004). The Positive and Negative Affect Schedule (PANAS): Construct validity, measurement properties and normative data in a large non-clinical sample. British Journal of Clinical Psychology, 43, 245–265.PubMedCrossRefGoogle Scholar
  14. DiPietro, J. A., Porges, S. W., & Uhly, B. (1992). Reactivity and developmental competence in preterm and full term infants. Developmental Psychology, 28, 831–841.CrossRefGoogle Scholar
  15. Dougherty, D. D., Shin, L. M., Alpert, N. M., Pitman, R. K., Orr, S. P., Lasko, M., et al. (1999). Anger in healthy men: A PET study using script-driven imagery. Biological Psychiatry, 46, 466–472.PubMedCrossRefGoogle Scholar
  16. Dufey, M., Hurtado, E., Fernandez, A. M., Manes, F., & Ibanez, A. (2010). Exploring the relationship between vagal tone and event related potentials in response to an affective picture task. Social Neuroscience, 1, 1–15.Google Scholar
  17. Fennig, S., Craig, T., Lavelle, J., Kovasznay, B., & Bromet, E. J. (1994). Best-estimate versus structured interview-based diagnosis in first-admission psychosis. Comprehensive Psychiatry, 35(5), 341–348.PubMedCrossRefGoogle Scholar
  18. Fennig, S., Naisberg-Fennig, S., Craig, T. J., et al. (1996). Comparison of clinical and research diagnoses of substance use disorders in a first-admission psychotic sample. American Journal of Addiction, 5(1), 40–48.Google Scholar
  19. Fernandez-Carriba, S., Loeches, A., Morcillo, A., & Hopkins, W. D. (2002). Functional asymmetry of emotions in primates: New findings in chimpanzees. Brain Research Bulletin, 57, 561–564.PubMedCrossRefGoogle Scholar
  20. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2002). Structured clinical interview for DSM-IV-TR Axis I disorders, research version, non-patient edition (SCID-I/NP). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  21. Garcia–Garcia, M., Dominguez-Borras, J., SanMiguel, I., & Escera, C. (2008). Electrophysiological and behavioral evidence of gender differences in the modulation of distraction by the emotional context. Biological Psychology, 79, 307–316.PubMedCrossRefGoogle Scholar
  22. Gevirtz, R. (2000). Resonant frequency training to restore homeostasis for treatment of psychophysiological disorders. Biofeedback, 27, 7–9.Google Scholar
  23. Gruber, J., Oveis, C., Keltner, D., & Johnson, S. L. (2008). Risk for mania and positive emotional responding: Too much of a good thing? Emotion, 8(1), 23–33.PubMedCrossRefGoogle Scholar
  24. Hassett, A. L., Radvanski, D. C., Vaschillo, E. G., Vaschillo, B., Sigal, L. H., et al. (2007). A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Applied Psychophysiology and Biofeedback, 32, 1–10.PubMedCrossRefGoogle Scholar
  25. Hofer, A., Siedentopf, C. M., Ischenbeck, A., Rettenbacher, M. A., Verius, M., Felber, S., et al. (2007). Sex differences in brain activation patterns during processing of positively and negatively valenced emotional words. Psychological Medicine, 37(1), 109–119.PubMedCrossRefGoogle Scholar
  26. Karavidas, M., Lehrer, P. M., Vaschillo, E., Vaschillo, B., Marin, H., Buyske, S., et al. (2007). Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Applied Psychophysiology and Biofeedback, 32(1), 19–30.PubMedCrossRefGoogle Scholar
  27. Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Brown, K., & Gatt, J. (2010). Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biological Psychiatry, 67(11), 1067–1074.PubMedCrossRefGoogle Scholar
  28. Kemp, A. H., Silberstein, R. B., Armstrong, S. M., & Nathan, P. J. (2004). Gender differences in the cortical electrophysiological processing of visual emotional stimuli. NeuroImage, 16, 632–646.CrossRefGoogle Scholar
  29. Kessler, R. C. (2004). Epidemiology of women and depression. Journal of Affective Disorders, 74, 5–13.CrossRefGoogle Scholar
  30. Kranzler, R., Kadden, R., Burleson, J., et al. (1995). Validity of psychiatric diagnoses in patients with substance use disorders—is the interview more important than the interviewer. Comprehensive Psychiatry, 36(4), 278–288.PubMedCrossRefGoogle Scholar
  31. Kranzler, H. R., Kadden, R. M., Babor, T. F., et al. (1996). Validity of the SCID in substance abuse patients. Addiction, 91(6), 859–868.PubMedCrossRefGoogle Scholar
  32. Lane, R. D., McRae, K., Reiman, E. M., Ahern, G. L., & Thayer, J. F. (2007). Neural correlates of vagal tone during emotion. Psychosomatic Medicine, 69, A-8.Google Scholar
  33. Lane, R. D., Weidenbacher, H., Fort, C. L., Thayer, J. F., & Allen, J. B. (2008). Subgenual anterior cingulate (BA25) activity correlates with changes in cardiac vagal tone during affective set shifting in healthy adults. Psychosomatic Medicine, 70, A-42.CrossRefGoogle Scholar
  34. Lane, R. D., McRae, K., Reiman, E. M., Chen, K., Ahern, G. L., & Thayer, J. F. (2009a). Neural correlates of heart rate variability during emotion. NeuroImage, 44, 213–222.PubMedCrossRefGoogle Scholar
  35. Lane, R. D., Waldstein, S. R., Chesney, M. A., Jennings, R., Lovallo, W. R., Kozel, P. J., et al. (2009b). The rebirth of neuroscience in psychosomatic medicine, part I: Historical context, methods, and relevant basic science. Psychosomatic Medicine, 71(2), 117–134.PubMedCrossRefGoogle Scholar
  36. Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., & Treadway, M. T. (2005). Meditation experience is associated with increased cortical thickness. NeuroReport, 16(17), 1893–1897.PubMedCrossRefGoogle Scholar
  37. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177–191.PubMedCrossRefGoogle Scholar
  38. Lehrer, P., Vaschillo, E., Vaschillo, B., Lu, S., Eckberg, D. L., Edelberg, R., et al. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65, 796–805.PubMedCrossRefGoogle Scholar
  39. Levy, M. N. (1990). Autonomic interactions in cardiac control. Annals of the New York Academy of Sciences, 601, 209–221.PubMedCrossRefGoogle Scholar
  40. Lithari, C., Frantzidis, C. A., Papadelis, C., Vivas, A. B., Klados, M. A., Kourtidou-Papadeli, C., et al. (2010). Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions. Brain Topography, 23, 27–40.PubMedCrossRefGoogle Scholar
  41. Lobbestael, J., Leurgans, M., & Arntz, A. (2010). Inter-rater reliability of the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID I) and Axis II Disorders (SCID II). Clinical Psychology Psychotherapy, 3, 21.Google Scholar
  42. Lyonfields, J., Borkevec, T., & Thayer, J. (1995). Vagal tone in generalized anxiety disorder and the effect of aversive imagery and worrisome thinking. Behavior Therapy, 26, 257–266.CrossRefGoogle Scholar
  43. Manta, S., Dong, J., & Debonnel, G. (2009). Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. Journal of Psychiatry and Neuroscience, 34(4), 272–280.PubMedGoogle Scholar
  44. Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., et al. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156, 675–682.PubMedGoogle Scholar
  45. McCraty, R. (2003). Heart-brain neurodynamics: The making of emotions. HeartMath Research Center, Institute of HeartMath, Publication Number 03-015. Boulder Creek, CA.Google Scholar
  46. McCraty, R., Atkinson, M., Tomasino, D., & Bradley, R. T. (2009). The coherent heart heart-brain interactions, psychophysiological coherence and the emergence of a system-wide order. Integral Review, 5(2), 10–115.Google Scholar
  47. Montoya, P., Schandry, R., & Muller, A. (1993). Heartbeat evoked potentials (HEP): Topography and influence of cardiac awareness and focus of attention. Electroencephalography and Clinical Neurophysiology, 88, 163–172.PubMedCrossRefGoogle Scholar
  48. Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383, 812–815.PubMedCrossRefGoogle Scholar
  49. Morris, J. S., Öhman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467–470.PubMedCrossRefGoogle Scholar
  50. Movius, H., & Allen, J. (2004). Cardiac vagal tone, defensiveness, and motivational style. Biological Psychology, 68, 147–162.CrossRefGoogle Scholar
  51. Nolan, R. P., Kamath, M. V., Floras, J. S., Stanley, J., Pang, C., Picton, P., et al. (2005). Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. American Heart Journal, 149(6), 1137.e1–1137.e7.CrossRefGoogle Scholar
  52. Nugent, A. C., Bain, E. E., Thayer, J. F., & Drevets, W. C. (2007). Anatomical correlates of autonomic control during a motor task. Psychosomatic Medicine, 69, A-74.Google Scholar
  53. Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77(3), 247–265.PubMedCrossRefGoogle Scholar
  54. Orozco, S., & Ehlers, C. L. (1998). Gender differences in electrophysiological responses to facial stimuli. Society of Biological Psychiatry, 44(4), 281–289.CrossRefGoogle Scholar
  55. Pitman, R. K., Orr, S. P., Forgue, D. F., Altman, B., & de Jong, J. B. (1990). Psychophysiologic responses to combat imagery of Vietnam veterans with posttraumatic stress disorder versus other anxiety disorders. Journal of Abnormal Psychology, 99, 49–54.PubMedCrossRefGoogle Scholar
  56. Pollatos, O., & Schandry, R. (2004). Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41, 476–482.PubMedCrossRefGoogle Scholar
  57. Porges, S. W. (1995). Cardiac vagal tone: A physiological index of stress. Neuroscience and Biobehavioral Reviews, 19, 225–233.PubMedCrossRefGoogle Scholar
  58. Pretz, J. E., Totz, K. S., & Kaufman, S. B. (2010). The effects of mood, cognitive style, and cognitive ability on implicit learning. doi: 10.1016/j.lindif.2009.12.003.
  59. Pu, J., Schmeichel, B. J., & Demaree, H. A. (2010). Cardiac vagal control predicts spontaneous regulation of negative emotional expression and subsequent cognitive performance. Biological Psychology, 84, 531–540.CrossRefGoogle Scholar
  60. Rechlin, T., Weis, M., Spitzer, A., & Kaschka, W. (1994). Are affective disorders associated with alterations of heart rate variability? Journal of Affective Disorders, 32, 271–275.PubMedCrossRefGoogle Scholar
  61. Reiman, E. M., Lane, R. D., Ahern, G. L., Schwartz, G. E., Davidson, R. J., Friston, K. J., et al. (1997). Neuroanatomical correlates of externally and internally generated emotion. American Journal of Psychiatry, 154, 918–925.PubMedGoogle Scholar
  62. Rush, A. J., George, M. S., Sackeim, H. A., Marangell, L. B., Husain, M. M., Giller, C., et al. (2000). Vagus nerve stimulation (VNS) for treatment-resistant depressions: A multicenter study. Biological Psychiatry, 47(4), 276–286.PubMedCrossRefGoogle Scholar
  63. Schandry, R., & Montoya, P. (1996). Event-related brain potentials and the processing of cardiac activity. Biological Psychology, 42, 75–85.PubMedCrossRefGoogle Scholar
  64. Schandry, R., Sparrer, B., & Weitkunat, R. (1986). From the heart to the brain: A study of heartbeat contingent scalp potentials. International Journal of Neuroscience, 30, 261–275.PubMedCrossRefGoogle Scholar
  65. Schupp, H. T., Junghofer, M., Welke, A. I., & Hamm, A. O. (2003). Attention and emotion: an ERP Analysis of facilitated emotional stimulus processing. Neuroreport, 14(8), 1107–1110.PubMedCrossRefGoogle Scholar
  66. Shear, M. K., Greeno, C., Kang, J., et al. (2000). Diagnosis of nonpsychotic patients in community clinics. American Journal of Psychiatry, 157, 581–587.PubMedCrossRefGoogle Scholar
  67. Siepmann, M., Aykac, V., Unterdorfer, J., Petrowski, K., & Mueck-Weymann, M. (2008). A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects. Applied Psychophysiology and Biofeedback, 33(4), 195–201.PubMedCrossRefGoogle Scholar
  68. Smith, D. P., Hillman, C. H., & Duley, A. R. (2005). Influences of age on emotional reactivity during picture processing. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 60, 49–56.CrossRefGoogle Scholar
  69. Steiner, J. L., Tebes, J. K., Sledge, W. H., et al. (1995). A comparison of the structured clinical interview for DSM-III-R and clinical diagnoses. Journal of Nervous Mental Disorders, 183(6), 365–369.CrossRefGoogle Scholar
  70. Tarvainen, M. P. & Niskanen, J. P. (2008). Kubios HRV version 2.0 user’s guide. Biosignal Analysis and Medical Imaging Group (BSAMIG). Department of Physics, University of Kuopio, Kuopio Finland. Matlab, MathWorks, Inc.Google Scholar
  71. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.CrossRefGoogle Scholar
  72. Terhaar, J., Viola, C. F., Bar, K., & Debener, S. (2012). Heartbeat evoked potentials mirror altered body perception in depressed patients. Clinical Neurophysiology. doi: 10.1016/j.clinph.2012.02.086.
  73. Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216.PubMedCrossRefGoogle Scholar
  74. Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Behavioral Reviews, 33(2), 81–88.CrossRefGoogle Scholar
  75. Tortora, G. J., & Grabowski, S. R. (1996). Principles of anatomy and physiology (8th ed.). New York: Harper Collins.Google Scholar
  76. Undem, B. J., & Weinreich, D. (Eds.). (2005). Advances in vagal afferent neurobiology. Boca Raton, FL: CRC Press.Google Scholar
  77. Vytal, K., & Hamann, S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. Journal of Cognitive Neuroscience, 22(12), 2864–2885.PubMedCrossRefGoogle Scholar
  78. Watson, D., Clarke, L. A., & Tellegen, A. (1988). Development and validation of brief Brief measures of positive and negative affect: The PANAS Scales. Journal of Personality and Social Psychology, 47, 1063–1070.CrossRefGoogle Scholar
  79. Wrase, J., Klein, S., Gruesser, S. M., Hermann, D., Flor, H., Mann, K., et al. (2003). Gender differences in the processing of standardized emotional visual stimuli in humans: A functional magnetic resonance imaging study. Neu-roscience Letters, 348, 41–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Starr MacKinnon
    • 1
    Email author
  • Richard Gevirtz
    • 1
  • Rollin McCraty
    • 2
  • Milton Brown
    • 1
  1. 1.CSPPAlliant International UniversitySan DiegoUSA
  2. 2.HeartMath Research CenterBoulder CreekUSA

Personalised recommendations