Advertisement

Applied Psychophysiology and Biofeedback

, Volume 38, Issue 2, pp 81–90 | Cite as

The Effect of a Single Session of Short Duration Biofeedback-Induced Deep Breathing on Measures of Heart Rate Variability During Laboratory-Induced Cognitive Stress: A Pilot Study

  • Gabriell E. Prinsloo
  • Wayne E. Derman
  • Michael I. Lambert
  • H. G. Laurie Rauch
Article

Abstract

This study examines the acute effect of heart rate variability (HRV) biofeedback on HRV measures during and immediately after biofeedback and during the following laboratory-induced stress. Eighteen healthy males exposed to work-related stress were randomised into an HRV biofeedback group (BIO) or a comparative group (COM). Subjects completed a modified Stroop task before (Stroop 1) and after (Stroop 2) the intervention. Both groups had similar physiological responses to stress in Stroop 1. In Stroop 2, the COM group responded similarly to the way they did to Stroop 1: respiratory frequency (RF) and heart rate (HR) increased, RMSSD and high frequency (HF) power decreased or had a tendency to decrease, while low frequency (LF) power showed no change. The BIO group responded differently in Stroop 2: while RF increased and LF power decreased, HR, RMSSD and HF power showed no change. In the BIO group, RMSSD was higher in Stroop 2 compared to Stroop 1. In conclusion, HRV biofeedback induced a short term carry-over effect during both the following rest period and laboratory-induced stress suggesting maintained HF vagal modulation in the BIO group after the intervention, and maintained LF vagal modulation in the COM group.

Keywords

HRV biofeedback HRV measures Cognitive stress 

Notes

Acknowledgments

We would like to thank Helicor for providing funding for this study. We receive no remuneration for merchandise sold and therefore have no vested interest in the outcome of the study.

References

  1. Airaksinen, K. E., Ikaheimo, M. J., Linnaluoto, M. K., Niemela, M., & Takkunen, J. T. (1987). Impaired vagal heart rate control in coronary artery disease. British Heart Journal, 58, 592–597.PubMedCrossRefGoogle Scholar
  2. Barnes, L. L. B., Harp, D., & Sik Jung, W. (2002). Reliability generalization of scores on the Spielberger state-trait anxiety inventory. Educational and Psychological Measurement, 62, 603–618.CrossRefGoogle Scholar
  3. Bernardi, L., Keller, F., Sanders, M., Reddy, P. S., Griffith, B., Meno, F., et al. (1989). Respiratory sinus arrhythmia in the denervated human heart. Journal of Applied Physiology, 67, 1447–1455.PubMedGoogle Scholar
  4. Bernardi, L., Salvucci, F., Suardi, R., Solda, P. L., Calciati, A., Perlini, S., et al. (1990). Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovascular Research, 24, 969–981.PubMedCrossRefGoogle Scholar
  5. Berntson, G. G., Lozano, D. L., & Chen, Y. J. (2005). Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology, 42, 246–252.PubMedCrossRefGoogle Scholar
  6. Delaney, J. P., & Brodie, D. A. (2000). Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Perceptual and Motor Skills, 91, 515–524.PubMedCrossRefGoogle Scholar
  7. Dimsdale, J. E., & Moss, J. (1980). Plasma catecholamines in stress and exercise. Journal of the American Medical Association, 243, 340–342.PubMedCrossRefGoogle Scholar
  8. Esch, T., Stefano, G. B., Fricchione, G. L., & Benson, H. (2002). The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinology Letters, 23, 199–208.PubMedGoogle Scholar
  9. Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon, D. Y., Ridderinkhof, K. R., et al. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences—USA, 105, 17538–17542.CrossRefGoogle Scholar
  10. Fouad, F. M., Tarazi, R. C., Ferrario, C. M., Fighaly, S., & Alicandri, C. (1984). Assessment of parasympathetic control of heart rate by a noninvasive method. American Journal of Physiology, 246, H838–H842.PubMedGoogle Scholar
  11. Friedman, B. H. (2007). An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74, 185–199.PubMedCrossRefGoogle Scholar
  12. Grasso, R., Schena, F., Gulli, G., & Cevese, A. (1997). Does low-frequency variability of heart period reflect a specific parasympathetic mechanism? Journal of the Autonomic Nervous System, 63, 30–38.PubMedCrossRefGoogle Scholar
  13. Hansen, A. L., Johnsen, B. H., Sollers, J. J., I. I. I., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. European Journal of Applied Physiology, 93, 263–272.PubMedCrossRefGoogle Scholar
  14. Hansen, A., Johnsen, B., & Thayer, J. (2003). Vagal influence on working memory and sustained attention. International Journal of Psychophysiology, 48, 263–274.PubMedCrossRefGoogle Scholar
  15. Hardt, J., & Rutter, M. (2004). Validity of adult retrospective reports of adverse childhood experiences: Review of the evidence. The Journal of Child Psychology and Psychiatry, 45, 260–273.CrossRefGoogle Scholar
  16. Hassett, A. L., Radvanski, D. C., Vaschillo, E. G., Vaschillo, B., Sigal, L. H., Karavidas, M. K., et al. (2007). A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Applied Psychophysiology and Biofeedback, 32, 1–10.PubMedCrossRefGoogle Scholar
  17. Hayano, J., Sakakibara, Y., Yamada, A., Yamada, M., Mukai, S., Fujinami, T., et al. (1991). Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. American Journal of Cardiology, 67, 199–204.PubMedCrossRefGoogle Scholar
  18. Heilman, K. J., Handelman, M., Lewis, G., & Porges, S. W. (2008). Accuracy of the StressEraser in the detection of cardiac rhythms. Applied Psychophysiology and Biofeedback, 33, 83–89.PubMedCrossRefGoogle Scholar
  19. Karavidas, M. K., Lehrer, P. M., Vaschillo, E., Vaschillo, B., Marin, H., Buyske, S., et al. (2007). Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Applied Psychophysiology and Biofeedback, 32, 19–30.PubMedCrossRefGoogle Scholar
  20. Kirschbaum, C., Wolf, O. T., May, M., Wippich, W., & Hellhammer, D. H. (1996). Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sciences, 58, 1475–1483.PubMedCrossRefGoogle Scholar
  21. Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis responses to stress: A review. Biological Psychology, 69, 113–132.PubMedCrossRefGoogle Scholar
  22. Lehrer, P., Carr, R. E., Smetankine, A., Vaschillo, E., Peper, E., Porges, S., et al. (1997). Respiratory sinus arrhythmia versus neck/trapezius EMG and incentive inspirometry biofeedback for asthma: A pilot study. Applied Psychophysiology and Biofeedback, 22, 95–109.PubMedCrossRefGoogle Scholar
  23. Lehrer, P., Karavidas, M. K., Lu, S. E., Coyle, S. M., Oikawa, L. O., Macor, M., et al. (2010). Voluntarily produced increases in heart rate variability modulate autonomic effects of endotoxin induced systemic inflammation: An exploratory study. Applied Psychophysiology and Biofeedback, 35, 303–315.PubMedCrossRefGoogle Scholar
  24. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25, 177–191.PubMedCrossRefGoogle Scholar
  25. Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., et al. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65, 796–805.PubMedCrossRefGoogle Scholar
  26. Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Scardella, A., Siddique, M., et al. (2004). Biofeedback treatment for asthma. Chest, 126, 352–361.PubMedCrossRefGoogle Scholar
  27. Lucini, D., Norbiato, G., Clerici, M., & Pagani, M. (2002). Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension, 39, 184–188.PubMedCrossRefGoogle Scholar
  28. Madden, K., & Savard, G. K. (1995). Effects of mental state on heart rate and blood pressure variability in men and women. Clinical Physiology, 15, 557–569.PubMedCrossRefGoogle Scholar
  29. Medigue, C., Girard, A., Laude, D., Monti, A., Wargon, M., & Elghozi, J. L. (2001). Relationship between pulse interval and respiratory sinus arrhythmia: a time- and frequency-domain analysis of the effects of atropine. Pflugers Archiv: European Journal of Physiology, 441, 650–655.PubMedCrossRefGoogle Scholar
  30. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.PubMedCrossRefGoogle Scholar
  31. Muench, F. (2008). The portable stress eraser heart rate variability biofeedback device: Background and research. Biofeedback, 36, 35–39.Google Scholar
  32. Narkiewicz, K., van de Borne, P., Montano, N., Hering, D., Kara, T., & Somers, V. K. (2006). Sympathetic neural outflow and chemoreflex sensitivity are related to spontaneous breathing rate in normal men. Hypertension, 47, 51–55.PubMedCrossRefGoogle Scholar
  33. Nolan, R. P., Kamath, M. V., Floras, J. S., Stanley, J., Pang, C., Picton, P., et al. (2005). Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. American Heart Journal, 149, 1137 e1.CrossRefGoogle Scholar
  34. Ohman, L., Nordin, S., Bergdahl, J., Slunga, B. L., & Stigsdotter, N. A. (2007). Cognitive function in outpatients with perceived chronic stress. Scandinavian Journal of Work, Environment & Health, 33, 223–232.CrossRefGoogle Scholar
  35. Penttila, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., et al. (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clinical Physiology, 21, 365–376.PubMedCrossRefGoogle Scholar
  36. Pieper, C., LaCroix, A. Z., & Karasek, R. A. (1989). The relation of psychosocial dimensions of work with coronary heart disease risk factors: A meta-analysis of five United States data bases. American Journal of Epidemiology, 129, 483–494.PubMedGoogle Scholar
  37. Pomeranz, B., Macaulay, R. J., Caudill, M. A., Kutz, I., Adam, D., Gordon, D., et al. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 248, H151–H153.PubMedGoogle Scholar
  38. Ponikowski, P., Anker, S. D., Chua, T. P., Szelemej, R., Piepoli, M., Adamopoulos, S., et al. (1997). Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. American Journal of Cardiology, 79, 1645–1650.PubMedCrossRefGoogle Scholar
  39. Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116–143.PubMedCrossRefGoogle Scholar
  40. Porges, S. W. (2009). The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic Journal of Medicine, 76(Suppl 2), S86–S90.PubMedCrossRefGoogle Scholar
  41. Prinsloo, G. E., Rauch, H. G., Lambert, M. I., Muench, F., Noakes, T. D., & Derman, W. E. (2011). The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Applied Cognitive Psychology, 25, 792–801.CrossRefGoogle Scholar
  42. Rauch, H., John, L., St Clair Gibson, A., Noakes, T., & Vaughan, C. (2005). Validation study of EEG responses during a modified Stroop colour word test. In Proceedings of the Physiology Society of Southern Africa.Google Scholar
  43. Reiner, R. (2008). Integrating a portable biofeedback device into clinical practice for patients with anxiety disorders: Results of a pilot study. Applied Psychophysiology and Biofeedback, 33, 55–61.PubMedCrossRefGoogle Scholar
  44. Renaud, P., & Blondin, J. P. (1997). The stress of Stroop performance: Physiological and emotional responses to color-word interference, task pacing, and pacing speed. International Journal of Psychophysiology, 27, 87–97.PubMedCrossRefGoogle Scholar
  45. Schwartz, P. J., La Rovere, M. T., & Vanoli, E. (1992). Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation, 85, I77–I91.PubMedGoogle Scholar
  46. Sleight, P., La Rovere, M. T., Mortara, A., Pinna, G., Maestri, R., Leuzzi, S., et al. (1995). Physiology and pathophysiology of heart rate and blood pressure variability in humans: Is power spectral analysis largely an index of baroreflex gain? Clinical Science (London, England: 1979), 88, 103–109.Google Scholar
  47. Smith, J. C. (2001). Advances in ABC Relaxation: Application and Inventories. New York: Springer.Google Scholar
  48. Smith, J. C. (2010). Smith Relaxation States Inventory 3 (SRSI3). Raleigh, NC: LuluPress.Google Scholar
  49. Smith, J. C., Wedell, A. B., Kolotylo, C. J., Lewis, J. E., Byers, K. Y., & Segin, C. M. (2000). ABC Relaxation Theory and factor structure of relaxation states, recalled relaxation activities, dispositions, and motivations. Psychological Reports, 86, 1201–1208.PubMedGoogle Scholar
  50. Spielberger, C. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  51. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: Human Perception and Performance, 18, 643–662.Google Scholar
  52. Stroud, L. R., Salovey, P., & Epel, E. S. (2002). Sex differences in stress responses: Social rejection versus achievement stress. Biological Psychiatry, 52, 318–327.PubMedCrossRefGoogle Scholar
  53. Taelman, J., Vandeput, S., Vlemincx, E., Spaepen, A., & Van, H. S. (2011). Instantaneous changes in heart rate regulation due to mental load in simulated office work. European Journal of Applied Physiology, 111, 1497–1505.PubMedCrossRefGoogle Scholar
  54. Task Force of the European Society of Cardiology and the North America Society of Pacing and Electrophysiology. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.CrossRefGoogle Scholar
  55. Uusitalo, A., Mets, T., Martinmaki, K., Mauno, S., Kinnunen, U., & Rusko, H. (2011). Heart rate variability related to effort at work. Applied Ergonomics, 42, 830–838.PubMedCrossRefGoogle Scholar
  56. Van Praag, H. M. (2002). Crossroads of corticotropin releasing hormone, corticosteroids and monoamines. About a biological interface between stress and depression. Neurotoxicity Research, 4, 531–555.PubMedCrossRefGoogle Scholar
  57. van Ravenswaaij-Arts, C. M., Kollee, L. A., Hopman, J. C., Stoelinga, G. B., & van Geijn, H. P. (1993). Heart rate variability. Annals of Internal Medicine, 118, 436–447.PubMedCrossRefGoogle Scholar
  58. Vanoli, E., & Schwartz, P. J. (1990). Sympathetic–parasympathetic interaction and sudden death. Basic Research in Cardiology, 85(Suppl 1), 305–321.PubMedGoogle Scholar
  59. Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27, 1–27.PubMedCrossRefGoogle Scholar
  60. Vaschillo, E., Vaschillo, B., & Lehrer, P. (2004). Heartbeat synchronizes with respiratory rhythm only under specific circumstances. Chest, 126, 1385–1386.PubMedCrossRefGoogle Scholar
  61. Vaschillo, E. G., Vaschillo, B., & Lehrer, P. (2006). Characteristics of resonance in heart rate variability stimulated by biofeedback. Applied Psychophysiology and Biofeedback, 31, 129–142.PubMedCrossRefGoogle Scholar
  62. Walker, L. G. (1990). The measurement of anxiety. Postgraduate Medical Journal, 66(Suppl 2), S11–S17.PubMedGoogle Scholar
  63. Wang, J., Korczykowski, M., Rao, H., Fan, Y., Pluta, J., Gur, R. C., et al. (2007). Gender difference in neural response to psychological stress. Social Cognitive and Affective Neuroscience, 2, 227–239.PubMedCrossRefGoogle Scholar
  64. Yildiz, M., & Ider, Y. Z. (2006). Model based and experimental investigation of respiratory effect on the HRV power spectrum. Physiological Measurement, 27, 973–988.PubMedCrossRefGoogle Scholar
  65. Zorawski, M., Blanding, N. Q., Kuhn, C. M., & LaBar, K. S. (2006). Effects of stress and sex on acquisition and consolidation of human fear conditioning. Learning and Memory, 13, 441–450.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gabriell E. Prinsloo
    • 1
  • Wayne E. Derman
    • 1
  • Michael I. Lambert
    • 1
  • H. G. Laurie Rauch
    • 1
  1. 1.MRC/UCT Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health SciencesUniversity of Cape TownCape Town, NewlandsSouth Africa

Personalised recommendations