Applied Psychophysiology and Biofeedback

, Volume 37, Issue 2, pp 91–102 | Cite as

Prefrontal Neuromodulation Using rTMS Improves Error Monitoring and Correction Function in Autism

  • Estate M. Sokhadze
  • Joshua M. Baruth
  • Lonnie Sears
  • Guela E. Sokhadze
  • Ayman S. El-Baz
  • Manuel F. Casanova


One important executive function known to be compromised in autism spectrum disorder (ASD) is related to response error monitoring and post-error response correction. Several reports indicate that children with ASD show reduced error processing and deficient behavioral correction after an error is committed. Error sensitivity can be readily examined by measuring event-related potentials (ERP) associated with responses to errors, the fronto-central error-related negativity (ERN), and the error-related positivity (Pe). The goal of our study was to investigate whether reaction time (RT), error rate, post-error RT change, ERN, and Pe will show positive changes following 12-week long slow frequency repetitive TMS (rTMS) over dorsolateral prefrontal cortex (DLPFC) in high functioning children with ASD. We hypothesized that 12 sessions of 1 Hz rTMS bilaterally applied over the DLPFC will result in improvements reflected in both behavioral and ERP measures. Participants were randomly assigned to either active rTMS treatment or wait-list (WTL) groups. Baseline and post-TMS/or WTL EEG was collected using 128 channel EEG system. The task involved the recognition of a specific illusory shape, in this case a square or triangle, created by three or four inducer disks. ERN in TMS treatment group became significantly more negative. The number of omission errors decreased post-TMS. The RT did not change, but post-error RT became slower. There were no changes in RT, error rate, post-error RT slowing, nor in ERN/Pe measures in the wait-list group. Our results show significant post-TMS differences in the response-locked ERP such as ERN, as well as behavioral response monitoring measures indicative of improved error monitoring and correction function. The ERN and Pe, along with behavioral performance measures, can be used as functional outcome measures to assess the effectiveness of neuromodulation (e.g., rTMS) in children with autism and thus may have important practical implications.


Autism Error monitoring Event-related potential Reaction time TMS 


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IVTR) (4th ed.). Washington, D.C.: Text revised.Google Scholar
  2. Arbel, Y., & Donchin, E. (2009). Parsing the componential structure of post-error ERPs: A principal component analysis of ERPs following errors. Psychophysiology, 46, 1288–1298.CrossRefGoogle Scholar
  3. Arbel, Y., & Donchin, E. (2011). When a child errs: The ERN and the Pe complex. Psychophysiology, 48, 55–63.PubMedCrossRefGoogle Scholar
  4. Baruth, J., Casanova, M., El-Baz, A., Horrell, T., Mathai, G., Sears, L., et al. (2010a). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorders. Journal of Neurotherapy, 14(3), 179–194.PubMedCrossRefGoogle Scholar
  5. Baruth, J., Casanova, M., Sears, L., & Sokhadze, E. (2010b). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1(2), 177–187.CrossRefGoogle Scholar
  6. Baruth, J., Sokhadze, E., El-Baz, A., Mathai, G., Sears, L., & Casanova, M. F. (2010c). Transcaranial magentic stimulation as a treatment for autism. In K. Siri & T. Lyons (Eds.), Cutting edge therapies for autism (pp. 388–397). New York: Skyhorse Publishing.Google Scholar
  7. Baruth, J., Williams, E., Sokhadze, E., El-Baz, A., Sears, L., & Casanova, M. F. (2011). Repetitive transcarnial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Science Digest, 1, 52–57.Google Scholar
  8. Bishop, D. V. (1993). Annotation: autism, executive functions and theory of mind: A neuropsychological perspective. Journal of Child Psychology and Psychiatry, 34, 279–293.PubMedCrossRefGoogle Scholar
  9. Bogte, H., Flamma, B., van der Meere, J., & van Engeland, H. (2007). Post-error adaptation in adults with high functioning autism. Neuropsychologia, 45, 1707–1714.PubMedCrossRefGoogle Scholar
  10. Bush, G., Luu, P., & Posner, M. (2000). Cognitive and emotional influences in the anterior cingulate cortex. Trends in Cognitive Science, 4, 214–222.CrossRefGoogle Scholar
  11. Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749.PubMedCrossRefGoogle Scholar
  12. Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 133–144). New York: Nova Biomedical Books.Google Scholar
  13. Casanova, M. F. (2007). The neuropathology of autism. Brain Pathology, 17, 422–433.PubMedCrossRefGoogle Scholar
  14. Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002a). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17, 692–695.PubMedCrossRefGoogle Scholar
  15. Casanova, M. F., Buxhoeveden, D., & Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. The Neuroscientist, 9, 496–507.PubMedCrossRefGoogle Scholar
  16. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  17. Casanova, M. F., van Kooten, I., Switala, A. E., van England, H., Heinsen, H., Steinbuch, H. W. M., et al. (2006a). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research, 6(3–4), 127–133.CrossRefGoogle Scholar
  18. Casanova, M. F., van Kooten, I., van Engeland, H., Heinsen, H., Steinbursch, H. W. M., Hof, P. R., et al. (2006b). Minicolumnar abnormalities in autism II. Neuronal size and number. Acta Neuropathologica, 112(3), 287–303.PubMedCrossRefGoogle Scholar
  19. Clemans, Z., Sokhadze, T., & El-Baz, A. (2011a). Custom program for extraction of event-related potential peaks in attention tasks. Presented at Research Louisville, Louisville, KY.Google Scholar
  20. Clemans, Z., Sokhadze, E., & El-Baz, A.S. (2011b) A custom-made Matlab program for ERP feature detection in psychological and physiological disorders using wavelet. Presented at the 97th Annual Meeting of Kentucky Academy of Science. Murray, KY.Google Scholar
  21. Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2002). Transcranial magnetic stimulation: A new investigational and treatment tool in psychiatry. Journal of Neuropsychiatry Clinical Neurosciences, 14, 406–415.CrossRefGoogle Scholar
  22. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters on the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  23. Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: A tutorial. Biological Psychology, 51, 87–107.PubMedCrossRefGoogle Scholar
  24. Franken, I. H., van Strien, J. W., Franzek, E. J., & van de Wetering, B. J. (2007). Error-processing deficits in patients with cocaine dependence. Biological Psychology, 75, 45–51.PubMedCrossRefGoogle Scholar
  25. Garvey, M. A., & Mall, V. (2008). Transcranial magnetic stimulation in children. Clinical Neurophysiology, 119, 973–984.PubMedCrossRefGoogle Scholar
  26. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psycholological Science, 4, 385–390.CrossRefGoogle Scholar
  27. Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3, 516–520.PubMedCrossRefGoogle Scholar
  28. George, M. S., Lisanby, S. H., & Sackeim, H. A. (1999). Transcranial magnetic stimulation: applications in neuropsychiatry. Archives of General Psychiatry, 56, 300–331.PubMedCrossRefGoogle Scholar
  29. George, M. S., Nahas, J., Kozol, F. A., Li, X., Yamanaka, K., Mishory, A., et al. (2003). Mechanisms and the current state of transcranial magnetic stimulation. CNS Spectrum, 8(7), 496–514.Google Scholar
  30. Gershon, A. A., Dannon, P. N., & Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160, 835–845.PubMedCrossRefGoogle Scholar
  31. Gillberg, C., & Billstedt, E. (2000). Autism and Asperger syndrome: Coexistence with other clinical disorders. Acta Psychiatrica Scandinavica, 102, 321–330.PubMedCrossRefGoogle Scholar
  32. Greenberg, B. D. (2007). Transcranial magnetic stimulation in anxiety disorders. In M. S. George & R. H. Belmaker (Eds.), Transcranial magnetic stimulation in clinical psychiatry (pp. 165–178). Washington, DC: American Psychiatric Publishing, Inc.Google Scholar
  33. Helmich, R. C., Siebner, H. R., Bakker, M., Munchau, A., & Bloem, B. R. (2006). Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease. Journal of Neurological Sciences, 248, 84–96.CrossRefGoogle Scholar
  34. Henderson, H., Schwartz, C., Mundy, P., Burnette, C., Sutton, S., Zahka, N., et al. (2006). Response monitoring, the error-related negativity, and differences in social behavior in autism. Brain and Cognition, 61, 96–109.PubMedCrossRefGoogle Scholar
  35. Herrmann, M. J., Remmler, J., Ehlis, A. C., Heindrich, A., & Fallgatter, A. J. (2004). Source localization of the error-related-negativity (ERN/Ne) and positivity (Pe). Cognitive Brain Research, 20, 294–299.PubMedCrossRefGoogle Scholar
  36. Hewig, J., Coles, M. G. H., Trippe, R. H., Hecht, H., & Miltner, W. H. R. (2011). Dissociation of Pe and ERN/Ne in the conscious recognition of an error. Psychophysiology, 48, 1390–1396.PubMedCrossRefGoogle Scholar
  37. Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189–233.CrossRefGoogle Scholar
  38. Hoffman, R. E., & Cavus, I. (2002). Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. American Journal of Psychiatry, 159, 1093–1102.PubMedCrossRefGoogle Scholar
  39. Holtzheimer, P. E., Russo, J., & Avery, D. H. (2001). A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression. Psychopharmacology Bulletin, 35, 149–169.PubMedGoogle Scholar
  40. Just, M. A., Cherkassky, V., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sequence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 1811–1821.PubMedCrossRefGoogle Scholar
  41. Kanizsa, G. (1976). Subjective contours. Scientific American, 235, 48–52.CrossRefGoogle Scholar
  42. LeCouteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview—revised (ADI-R). Los Angeles, CA: Western Psychological Services.Google Scholar
  43. Loo, C., & Mitchell, P. (2005). A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders, 88, 255–267.PubMedCrossRefGoogle Scholar
  44. Luu, P., Flaisch, T., & Tucker, D. M. (2000). Medial frontal cortex in action monitoring. Journal of Neuroscience, 20, 464–469.PubMedGoogle Scholar
  45. Luu, P., Tucker, D. M., Derryberry, D., Reed, M., & Poulsen, C. (2003). Electrophysiological responses to errors and feedback in the process of action regulation. Psychological Science, 14, 47–53.PubMedCrossRefGoogle Scholar
  46. Luu, P., Tucker, D. M. L., Englander, R., Lockfeld, A., Lutsep, H., & Oken, B. (2001). Localizing acute stroke-related EEC changes: Assessing the effects of spatial undersampling. Journal of Clinical Neurophysiology, 18, 302–317.PubMedCrossRefGoogle Scholar
  47. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000). Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clinical Neurophysiolgy, 111, 800–805.CrossRefGoogle Scholar
  48. Mars, R. B., Coles, M. G. H., Grol, M. J., Holroyd, C. B., Nieuwenhuis, S., Hulstijn, W., et al. (2005). Neural dynamics of error processing in medial frontal cortex. NeuroImage, 28, 1007–1013.PubMedCrossRefGoogle Scholar
  49. Mathalon, D. H., Whitfield, S. L., & Ford, J. M. (2003). Anatomy of an error: ERP and fMRI. Biological Psychology, 64, 119–141.PubMedCrossRefGoogle Scholar
  50. Mountcastle, V. B. (2003). Introduction. Computation in cortical columns. Cerebral Cortex, 13, 2–4.PubMedCrossRefGoogle Scholar
  51. Mundy, P. (2003). The neural basis of social impairments in autism: The role of the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(793–809), 003.Google Scholar
  52. Mundy, P., & Neal, R. (2001). Neural plasticity, joint attention and a transactional social-orienting model of autism. International Review of Mental Retardation, 23, 139–168.CrossRefGoogle Scholar
  53. Murphy, K. R., & Myors, B. (2003). Statistical power analysis: A simple and general model for traditional and modern hypothesis tests (2nd ed.). New York, NY: Lawrence Erlbaum Associates.Google Scholar
  54. Nieuwenhuis, S., Ridderinkhof, K. R., Blom, J., Band, G. P., & Kok, A. (2001). Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology, 38, 752–760.PubMedCrossRefGoogle Scholar
  55. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  56. Overbeek, T. J. M., Nieuwenhuis, S., & Ridderinkhof, K. R. (2005). Dissociable components of error processing. Journal of Psychophysiology, 19, 319–329.CrossRefGoogle Scholar
  57. Ozonoff, S. (1997). Casual mechanisms of autism: Unifying perspectives from an information-processing framework. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 868–879). New York: Wiley.Google Scholar
  58. Quintana, H. (2005). Transcranial magnetic stimulation in persons younger than the age of 18. The Journal of ECT, 21, 88–95.PubMedCrossRefGoogle Scholar
  59. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447.PubMedCrossRefGoogle Scholar
  60. Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63, 164–172.PubMedCrossRefGoogle Scholar
  61. Rosenberg, P. B., Mehndiratta, R. B., Mehndiratta, Y. P., Wamer, A., Rosse, R. B., & Balish, M. (2002). Repetitive magnetic stimulation treatment of comorbid posttraumatic stress disorder and major depression. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 270–276.PubMedCrossRefGoogle Scholar
  62. Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2, 255–267.PubMedCrossRefGoogle Scholar
  63. Russell, J. (1997). How executive disorders can bring about an inadequate theory of mind. In J. Russell (Ed.), Autism as an executive disorder (pp. 256–304). Oxford, UK: Oxford University Press.Google Scholar
  64. Russell, J., & Jarrold, C. (1998). Error-correction problems in autism: Evidence for a monitoring impairment? Journal of Autism Developmental Disorders, 28, 177–188.CrossRefGoogle Scholar
  65. Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., et al. (2010a). Impaired error monitoring and correction function in autism. Journal of Neurotherapy, 14, 79–95.PubMedCrossRefGoogle Scholar
  66. Sokhadze, E., Baruth, J., Tasman, A., El-Baz, A., Mansoor, M., Ramaswamy, R., et al. (2010b). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Applied Psychophysiology and Biofeedback, 35, 147–161.PubMedCrossRefGoogle Scholar
  67. Sokhadze, E., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. (2009a). Effect of a low-frequency repetitive transcranial magnetic stimulation (rTMS) on induced gamma frequency oscillations and event-related potentials during processing of illusory figures in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 619–634.PubMedCrossRefGoogle Scholar
  68. Sokhadze, E., Tasman, A., El-Baz, A., Baruth, J., Mathai, G., Sears, L., et al. (2009b). Event-related study of novelty processing abnormalities in autism. Applied Psychophysiology and Biofeedback, 34, 37–51.PubMedCrossRefGoogle Scholar
  69. Srinivasan, R., Tucker, D. M., & Murias, M. (1998). Estimating the spatial Nyquist of the human EEC. Behavior Research Methods, Instruments, and Computers, 30, 8–19.CrossRefGoogle Scholar
  70. Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring: recent findings and theoretical perspectives. Neuroscientist, 13, 160–172.PubMedCrossRefGoogle Scholar
  71. Thakkar, K. N., Polli, F. E., Joseph, R. M., Tuch, D. S., Hadjikhani, N., Barton, J. J., et al. (2008). Response monitoring, repetitive behaviour and anterior cingulate abnormalities in autism spectrum disorders (ASD). Brain, 131, 2464–2478.PubMedCrossRefGoogle Scholar
  72. Van Veen, V., & Carter, C. S. (2002). The timing of action-monitoring process in the anterior cingulate cortex. Journal Cognitive Neuroscience, 14(4), 593–602.CrossRefGoogle Scholar
  73. Vlamings, P. H., Jonkman, L. M., Hoeksma, M. R., van Engeland, H., & Kemner, C. (2008). Reduced error monitoring in children with autism spectrum disorder: An ERP study. European Journal of Neurosciences, 28, 399–406.CrossRefGoogle Scholar
  74. Wagner, T., Rushmore, J., Eden, U., & Valero-Cabre, A. (2009). Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex, 45, 1025–1034.PubMedCrossRefGoogle Scholar
  75. Wassermann, E. M., & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clinical Neurophysiology, 112, 1367–1377.PubMedCrossRefGoogle Scholar
  76. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  77. Wechsler, D. (2004). Wechsler abbreviated scale for intelligence. San Antonio, TX: Harcourt Assessment, Inc.Google Scholar
  78. Yeung, N., Cohen, J. D., & Botvinick, M. M. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Estate M. Sokhadze
    • 1
  • Joshua M. Baruth
    • 1
  • Lonnie Sears
    • 2
  • Guela E. Sokhadze
    • 3
  • Ayman S. El-Baz
    • 4
  • Manuel F. Casanova
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Department of PediatricsUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Department of Psychology and Brain SciencesUniversity of LouisvilleLouisvilleUSA
  4. 4.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA

Personalised recommendations