Applied Psychophysiology and Biofeedback

, Volume 36, Issue 3, pp 147–157 | Cite as

Identification of Event-Related Potentials Elicited by Conceptual Mismatch Between Expectations and Self-chosen TV Images

  • Shinobu AdachiEmail author
  • Koji Morikawa
  • Hiroshi NittonoEmail author


When a voluntary action is followed by an unexpected stimulus, a late positive potential (LPP) with a posterior scalp distribution is elicited in a latency range of 500–700 ms. In the present study, we examined what type of mismatch between expectations and action outcomes was reflected by the LPP. Twelve student volunteers participated in a task simulating choice of TV programs. After choosing one of three options displayed as a cue stimulus, they viewed a second stimulus (still TV image). To manipulate the type of expectation, three kinds of cue conditions were used: thumbnail image condition (three small TV images), category label condition (three words), and no cue condition (three question marks). Over trials, the second stimulus either matched (p = .80) or mismatched (p = .20) the chosen option. As compared to matched TV images, mismatched TV images elicited a larger LPP (500–700 ms) in the thumbnail image and category label conditions. In addition, a larger centroparietal P3 (400–450 ms) was elicited to mismatched TV images in the thumbnail image condition alone. LPP reflects a conceptual mismatch between a category-based expectation and an ensuing action outcome, whereas P3 reflects a perceptual mismatch between an image-based expectation and an action outcome.


Event-related potentials Late positive potential P3 Expectation Action effect 


  1. Adachi, S., Morikawa, K., & Nittono, H. (2007). Event-related potentials elicited by unexpected visual stimuli after voluntary actions. International Journal of Psychophysiology, 66, 238–243.PubMedCrossRefGoogle Scholar
  2. Bennington, J. Y., & Polich, J. (1999). Comparison of P300 from passive and active tasks for auditory and visual stimuli. International Journal of Psychophysiology, 34, 171–177.PubMedCrossRefGoogle Scholar
  3. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2008). An alternative perspective on “semantic P600” effects in language comprehension. Brain Research Reviews, 59, 55–73.PubMedCrossRefGoogle Scholar
  4. Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalography and Clinical Neurophysiology, 39, 131–143.PubMedCrossRefGoogle Scholar
  5. Daffner, K. R., Scinto, L. F., Calvo, V., Faust, R., Mesulam, M. M., West, W. C., et al. (2000). The influence of stimulus deviance on electrophysiologic and behavioral responses to novel events. Journal of Cognitive Neuroscience, 12, 393–406.PubMedCrossRefGoogle Scholar
  6. Dien, J. (2010). The ERP PCA Toolkit: An open source program for advanced statistical analysis of event-related potential data. Journal of Neuroscience Methods, 187, 138–145.PubMedCrossRefGoogle Scholar
  7. Dien, J., Beal, D. J., & Berg, P. (2005). Optimizing principal components analysis of event-related potentials: Matrix type, factor loading weighting, extraction, and rotations. Clinical Neurophysiology, 116, 1808–1825.PubMedCrossRefGoogle Scholar
  8. Dien, J., & Frishkoff, G. A. (2004). Principal components analysis of event-related potential datasets. In T. Handy (Ed.), Event-related potentials: A methods handbook (pp. 189–207). Cambridge, MA: MIT Press.Google Scholar
  9. Dien, J., Khoe, W., & Mangun, G. R. (2007). Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations. Human Brain Mapping, 28, 742–763.PubMedCrossRefGoogle Scholar
  10. Donchin, E. (1981). Surprise!.Surprise? Psychophysiology, 18, 493–513.PubMedCrossRefGoogle Scholar
  11. Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456–467.PubMedCrossRefGoogle Scholar
  12. Ferrari, V., Bradley, M. M., Codispoti, M., & Lang, P. J. (2010). Detecting novelty and significance. Journal of Cognitive Neuroscience, 22, 404–411.PubMedCrossRefGoogle Scholar
  13. Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170.PubMedCrossRefGoogle Scholar
  14. Foti, D., Hajcak, G., & Dien, J. (2009). Differentiating neural responses to emotional pictures: Evidence from temporal-spatial PCA. Psychophysiology, 46, 521–530.PubMedCrossRefGoogle Scholar
  15. Friederici, A. D. (2004). Event-related brain potential studies in language. Current Neurology and Neuroscience Reports, 4, 466–470.PubMedCrossRefGoogle Scholar
  16. Frisch, S., Kotz, S. A., von Cramon, D. Y., & Friederici, A. D. (2003). Why the P600 is not just a P300: The role of the basal ganglia. Clinical Neurophysiology, 114, 336–340.PubMedCrossRefGoogle Scholar
  17. García-Larrea, L., & Cézanne-Bert, G. (1998). P3, positive slow wave and working memory load: A study on the functional correlates of slow wave activity. Electroencephalography and Clinical Neurophysiology, 108, 260–273.PubMedCrossRefGoogle Scholar
  18. Iwanaga, M., & Nittono, H. (2010). Unexpected action effects elicit deviance-related brain potentials and cause behavioral delay. Psychophysiology, 47, 281–288.PubMedCrossRefGoogle Scholar
  19. Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: Challenges to syntax. Brain Research, 1146, 23–49.PubMedCrossRefGoogle Scholar
  20. Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996). Independent component analysis of electroencephalographic data. In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 145–151). Cambridge, MA: MIT Press.Google Scholar
  21. Matsuda, I., Nittono, H., Hirota, A., Ogawa, T., & Takasawa, N. (2009). Event-related brain potentials during the standard autonomic-based concealed information test. International Journal of Psychophysiology, 74, 58–68.PubMedCrossRefGoogle Scholar
  22. Nittono, H. (2004). The action-perception paradigm: A new perspective in cognitive neuroscience. International Congress Series, 1270, 26–31.CrossRefGoogle Scholar
  23. Nittono, H. (2005). Missing-stimulus potentials associated with a disruption of human-computer interaction. Psychologia: An International Journal of Psychology in the Orient, 48, 93–101.CrossRefGoogle Scholar
  24. Nittono, H. (2006). Voluntary stimulus production enhances deviance processing in the brain. International Journal of Psychophysiology, 59, 15–21.PubMedCrossRefGoogle Scholar
  25. Nittono, H., Hamada, A., & Hori, T. (2003). Brain potentials after clicking a mouse: A new psychophysiological approach to human-computer interaction. Human Factors, 45, 591–599.PubMedCrossRefGoogle Scholar
  26. Nittono, H., Shibuya, Y., & Hori, T. (2007). Anterior N2 predicts subsequent viewing time and interest rating for novel drawings. Psychophysiology, 44, 687–696.PubMedCrossRefGoogle Scholar
  27. Nittono, H., & Ullsperger, P. (2000). Event-related potentials in a self-paced novelty oddball task. Neuroreport, 11, 1861–1864.PubMedCrossRefGoogle Scholar
  28. Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), User centered system design (pp. 31–61). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  29. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  30. Penney, T. B., Mecklinger, A., & Nessler, D. (2001). Repetition related ERP effects in a visual object target detection task. Cognitive Brain Research, 10, 239–250.PubMedCrossRefGoogle Scholar
  31. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.PubMedCrossRefGoogle Scholar
  32. Ritter, W., Sussman, E., Deacon, D., Cowan, N., & Vaughan, H. G., Jr. (1999). Two cognitive systems simultaneously prepared for opposite events. Psychophysiology, 36, 835–838.PubMedCrossRefGoogle Scholar
  33. Ruchkin, D. S., & Sutton, S. (1983). Positive slow wave and P300: Association and dissociation. In A. W. K. Gaillard & W. Ritter (Eds.), Tutorials in event related potential research: Endogenous components (pp. 233–250). Amsterdam: North-Holland.CrossRefGoogle Scholar
  34. Ruchkin, D. S., Sutton, S., Kietzman, M. L., & Silver, K. (1980). Slow wave and P300 in signal detection. Electroencephalography and Clinical Neurophysiology, 50, 35–47.PubMedCrossRefGoogle Scholar
  35. Silvia, P. J. (2006). Exploring the psychology of interest. New York: Oxford University Press.CrossRefGoogle Scholar
  36. Squires, N. K., Squires, K. C., & Hillyard, S. A. (1975). Two varieties of long latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38, 387–401.PubMedCrossRefGoogle Scholar
  37. Waszak, F., & Herwig, A. (2007). Effect anticipation modulates deviance processing in the brain. Brain Research, 1183, 74–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Advanced Technology Research LaboratoryPanasonic CorporationKyotoJapan
  2. 2.Graduate School of Integrated Arts and SciencesHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations