Applied Psychophysiology and Biofeedback

, Volume 36, Issue 2, pp 71–80 | Cite as

Effects of Heart Rate Variability Biofeedback in Subjects with Stress-Related Chronic Neck Pain: A Pilot Study

  • David M. Hallman
  • Erik M. G. Olsson
  • Bo von Schéele
  • Lennart Melin
  • Eugene Lyskov


Recent studies focusing on autonomic nervous system (ANS) dysfunctions, together with theoretical pathophysiological models of musculoskeletal disorders, indicate the involvement of ANS regulation in development and maintenance of chronic muscle pain. Research has demonstrated the effectiveness of heart rate variability (HRV) biofeedback (BF) in increasing HRV and reducing the symptoms of different disorders characterized by ANS aberration. The study investigated the effects of resonance frequency HRV BF on autonomic regulation and perceived health, pain, stress and disability in 24 subjects with stress-related chronic neck-shoulder pain. Twelve subjects participated in 10 weekly sessions of resonant HRV BF and were compared to a control group. Subjective reports and HRV measures during relaxation and in response to a standardized stress protocol were assessed for both groups pre- and post-intervention. Group × time interactions revealed a significantly stronger increase over time in perceived health (SF-36) for the treatment group, including vitality, bodily pain and social functioning. Interactions were also seen for HRV during relaxation and reactivity to stress. The present pilot study indicates improvement in perceived health over a 10 week intervention with HRV-biofeedback in subjects with chronic neck-pain. Increased resting HRV as well as enhanced reactivity to hand grip and cold pressor tests might reflect beneficial effects on ANS regulation, and suggest that this intervention protocol is suitable for a larger controlled trial.


Heart rate variability Biofeedback ANS Neck pain Stress tests 


  1. Berntson, G. G., Bigger, T., Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origin, methods, and interpretive caveats. Psychophysiology, 34, 623–648.PubMedCrossRefGoogle Scholar
  2. Bongers, P. M., Kremer, A. M., & ter Laak, J. (2002). Are psychosocial factors, risk factors for symptoms and signs of the shoulder, elbow, or hand/wrist?: A review of the epidemiological literature. American Journal of Industrial Medicine, 41, 315–342.PubMedCrossRefGoogle Scholar
  3. Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.Google Scholar
  4. Davies, L. C., Colhoun, H., Coats, A. J. S., Piepoli, M., & Francis, D. P. (2002). A noninvasive measure of baroreflex sensitivity without blood pressure measurement. American Heart Journal, 143, 441–447.PubMedCrossRefGoogle Scholar
  5. Del Pozo, J., Gevirtz, R., Scher, B., & Guarneri, E. (2004). Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. American Heart Journal, 147, G1–G6.CrossRefGoogle Scholar
  6. Fagius, J., Karhuvaara, S., & Sundlof, G. (1989). The cold pressor test: Effects on sympathetic nerve activity in human muscle and skin nerve fascicles. Acta Physiologica Scandinavia, 137(3), 325–334.CrossRefGoogle Scholar
  7. Gevirtz, R. (2006). The muscle spindle trigger point model of chronic pain. Biofeedback, 34, 53–56.Google Scholar
  8. Gockel, M., Lindholm, H., Alaranta, H., Viljanen, A., Lindquist, A., & Lindholm, T. (1995). Cardiovascular functional disorder and stress among patients having neck-shoulder symptoms. Annals of the Rheumatic Diseases, 54(6), 494–497.PubMedCrossRefGoogle Scholar
  9. Hassett, A. L., Radvanski, D. C., Vaschillo, E. G., Vaschillo, B., Sigal, L. H., et al. (2007). A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Applied Psychophysiology and Biofeedback, 32(1), 1–10.PubMedCrossRefGoogle Scholar
  10. Hubbard, D., & Berkhoff, G. (1993). Myofascial trigger points show spontaneous needle EMG activity. Spine, 18, 1803–1807.PubMedCrossRefGoogle Scholar
  11. Johansson, H., Windhorst, U., Djupsjöbacka, M., & Passatore, M. (Eds.). (2003). Chronic work-related myalgia. Neuromuscular mechanisms behind work-related chronic muscle pain syndromes. Gävle: Gävle University press.Google Scholar
  12. Kalezic, N., Åsell, M., Kerschbaumer, H., & Lyskov, E. (2007). Physiological reactivity to functional tests in patients with chronic low back pain. Journal of Musculoskeletal Pain, 15(1), 29–40.CrossRefGoogle Scholar
  13. Kalezic, N., Noborisaka, Y., Nakata, M., Crenshaw, A., Karlsson, S., Lyskov, E., et al. (2010). Cardiovascular and muscle activity during chewing in whiplash-associated disorders (WAD). Archives of Oral Biology, 55, 447–453.PubMedCrossRefGoogle Scholar
  14. Kapitza, K. P., Passie, T., Bernateck, M., & Karst, M. (2010). First non-contingent respiratory biofeedback placebo versus contingent biofeedback in patients with chronic low back pain: A randomized controlled, double-blind trial. Applied Psychophysiology & Biofeedback, 35, 207–217.CrossRefGoogle Scholar
  15. Khurana, R. K., & Setty, A. (1996). The value of isometric hand-grip test—studies in various autonomic disorders. Clinical Autonomic Research, 6, 211–218.PubMedCrossRefGoogle Scholar
  16. Larsman, P., Thorn, S., Søgaard, K., Sandsjö, L., Sjøgaard, G., & Kadefors, R. (2009). Work related perceived stress and muscle activity during standardized computer work among female computer users. Work: A Journal of Prevention, Assessment and Rehabilitation, 32(2), 189–199.Google Scholar
  17. Larsson, S. E., Larsson, R., Zhang, Q., Cai, H., & Öberg, P. Å. (1995). Effects of psychophysiological stress on trapezius muscles blood flow and electromyography during static load. European Journal of Applied Physiology and Occupational Physiology, 71, 493–498.PubMedCrossRefGoogle Scholar
  18. Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177–191.PubMedCrossRefGoogle Scholar
  19. Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., et al. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65(5), 796–805.PubMedCrossRefGoogle Scholar
  20. Leistad, R., Nilsen, K., Stovner, L., Westgaard, R., Rø, M., & Sand, T. (2008). Similarities in stress physiology among patients with chronic pain and headache disorders: Evidence for a common pathophysiological mechanism? The Journal of Headache and Pain, 9, 165–175.PubMedCrossRefGoogle Scholar
  21. Linton, S. J. (2000). A review of psychological risk factors in back and neck pain. Spine, 25, 1148–1156.PubMedCrossRefGoogle Scholar
  22. Lisspers, J., Nygren, A., & Soderman, E. (1997). Hospital Anxiety and Depression Scale (HAD): Some psychometric data for a Swedish sample. Acta Psychiatrica Scandinavica, 96(4), 281–286.PubMedCrossRefGoogle Scholar
  23. Lovallo, W. (1975). The cold pressor test and autonomic function. A review and integration. Psychophysiology, 12(3), 268–282.PubMedCrossRefGoogle Scholar
  24. Lundberg, U. (2002). Psychophysiology of work: Stress, gender, endocrine responses, and work-related upper extremity disorders. American Journal of Industrial Medicine, 41, 338–392.CrossRefGoogle Scholar
  25. MacDermid, J. C., Walton, D. M., Avery, S., Blanchard, A., Etruw, E., McAlpine, C., et al. (2009). Measurement properties of the neck disability index: A systematic review. J Journal of Orthopaedic & Sports Physical Therapy, 39(5), 400–417.Google Scholar
  26. Maekawa, K., Clark, G. T., & Kuboki, T. (2002). Intramuscular hypoperfusion, adrenergic receptors, and chronic muscle pain. The Journal of Pain, 3, 251–260.PubMedCrossRefGoogle Scholar
  27. McCarthy, M. J. H., Grevitt, M. P., Silcocks, P., & Hobbs, G. (2007). The reliability of the Vernon and Mior neck disability index, and its validity compared with the short form-36 health survey questionnaire. European Spine Journal, 16(12), 2111–2117.PubMedCrossRefGoogle Scholar
  28. Nolan, R., Kamath, M., Floras, J., Stanley, J., Pang, C., Picton, P., et al. (2005). Heart rate variability biofeedback as a behavioral neurocardiac intervention to enhance vagal heart rate control. American Heart Journal, 149, 1137.e1–1137.e7.CrossRefGoogle Scholar
  29. Passatore, M., & Roatta, S. (2006). Influence of sympathetic nervous system on sensorimotor function: Whiplash associated disorders (WAD) as a model. European Journal of Applied Physiology, 98, 423–449.PubMedCrossRefGoogle Scholar
  30. Roatta, S., Arendt-Nielsen, L., & Farina, D. (2008). Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans. Journal of Physiology, 586, 5561–5571.PubMedCrossRefGoogle Scholar
  31. Siepmann, M., Aykac, V., Unterdörfer, J., Petrowski, K., & Mueck-Weymann, M. (2008). A pilot study on the effects of heart rate variability biofeedback in patients with depression and in healthy subjects. Applied Psychophysiology and Biofeedback, 33, 195–201.PubMedCrossRefGoogle Scholar
  32. Statistics Sweden. (2008). Arbetsmiljön 2007 (The Work Environment 2007). In Arbetsmiljöstatistisk Rapport 2008:4. Arbetsmiljöverket, Stockholm, Sweden.Google Scholar
  33. Swanson, K. S., Gevirtz, R. N., Brown, M., Spira, J., Guarneri, E., & Stoletniy, L. (2009). The effects of biofeedback on function in patients with heart failure. Applied Psychophysiology and Biofeedback, 34, 71–91.PubMedCrossRefGoogle Scholar
  34. Task Force of the European Society of cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 93, 1043–1065.Google Scholar
  35. Vaschillo, E. G., Vaschillo, B., & Lehrer, P. (2006). Characteristics of resonance in heart rate variability stimulated by biofeedback. Applied Psychophysiology and Biofeedback, 31(2), 129–139.PubMedCrossRefGoogle Scholar
  36. Vernon, H., & Mior, S. (1991). The Neck Disability Index: A study of reliability and validity. Journal of Manipulative Physiological Therapeutics, 14, 409–415.Google Scholar
  37. Victor, R. G., Leimbach, W. N., Jr., Seals, D. R., Wallin, B. G., & Mark, A. L. (1987). Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension, 9(5), 429–436.PubMedGoogle Scholar
  38. Ware, J. E., Jr., Gandek, B., Kosinski, M., Aaronson, N. K., Apolone, G., Brazier, J., et al. (1998). The equivalence of SF-36 summary health scores estimated using standard and country-specific algorithms in 10 countries: Results from the IQOLA Project. International Quality of Life Assessment. Journal of Clinical Epidemiology, 51(11), 1167–1170.PubMedCrossRefGoogle Scholar
  39. Wheat, A. L., & Larkin, K. T. (2010). Biofeedback of heart rate variability and related physiology: A critical review. Applied Psychophysiology and Biofeedback, 35, 229–242.PubMedCrossRefGoogle Scholar
  40. Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67, 361–370.PubMedCrossRefGoogle Scholar
  41. Zucker, T., Samuelson, K., Muench, F., Greenberg, M., & Gevirtz, R. (2009). The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: A pilot study. Applied Psychophysiology and Biofeedback, 34, 135–143.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David M. Hallman
    • 1
    • 2
  • Erik M. G. Olsson
    • 2
  • Bo von Schéele
    • 3
    • 4
  • Lennart Melin
    • 5
  • Eugene Lyskov
    • 1
  1. 1.Centre for Musculoskeletal ResearchUniversity of GävleGävleSweden
  2. 2.Department of Public Health and Caring SciencesUppsala UniversityUppsalaSweden
  3. 3.Biopsychosocial Medicine ABUppsalaSweden
  4. 4.School of Innovation, Design and EngineeringMälardalen UniversityVästeråsSweden
  5. 5.Department of PsychologyUppsala UniversityUppsalaSweden

Personalised recommendations