Applied Psychophysiology and Biofeedback

, Volume 36, Issue 1, pp 47–56 | Cite as

Postural Control During Visual and Kinesthetic Motor Imagery

Article

Abstract

Despite the accumulating evidence supporting an interaction between cognitive functions and postural control, little is known about the selective impact of the mental representation of an action, i.e., motor imagery (MI) on postural control. As postural oscillations are reduced during a cognitive task of backward silent counting, a greater stability is also expected during MI compared to a no-task condition (standing). Twenty participants took part in this experiment, which aimed at providing evidence that MI may improve postural stability. They were requested to mentally imagine a movement while standing on a force-plate. Results showed a decrease in both path length and postural sway variability on the anterior-posterior and lateral axes during all dual-task sessions, as compared to the motionless condition. These postural adjustments might result from both central and peripheral processes, and/or increased muscle stiffness. Conversely, postural oscillation amplitude increased on the vertical axis during MI of three vertical jumps, hence suggesting that postural regulations remain task-related during MI. Finally, our data showed that kinesthetic and visual imagery differentially impacted the postural regulation.

Keywords

Motor imagery Postural sway Cognitive processing Mental chronometry 

References

  1. Andersson, G., Hagman, J., Talianzadeh, R., Svedberg, A., & Larsen, H. C. (2002). Effect of cognitive load on postural control. Brain Research Bulletin, 58, 135–139.PubMedCrossRefGoogle Scholar
  2. Andersson, G., Yardley, L., & Luxon, L. (1998). A dual-task study of interference between mental activity and control of balance. American Journal of Otolaryngology, 19, 632–637.Google Scholar
  3. Bakker, F. C., Boschker, M. S., & Chung, T. (1996). Changes in muscular activity while imaging weight-lifting using stimulus or response propositions. Journal of Sport and Exercise Psychology, 18, 313–324.Google Scholar
  4. Bakker, M., de Lange, F. P., Helmich, R. C., Shieringa, R., & Bleom, B. R. (2008a). Cerebral correlates of motor imagery of normal and precision gait. NeuroImage, 41, 998–1010.PubMedCrossRefGoogle Scholar
  5. Bakker, M., Overeem, S., Snijders, A. H., Borm, G., van Elswijk, G., Toni, I., et al. (2008b). Motor imagery of foot dorsiflexion and gait: Effects on corticospinal excitability. Clinical Neurophysiology, 119, 2519–2527.PubMedCrossRefGoogle Scholar
  6. Bakker, M., Verstappen, C. C., Bloem, B. R., & Toni, I. (2007). Recent advances in functional neuroimaging of gait. Journal of Neural Transmission, 114, 1323–1331.PubMedCrossRefGoogle Scholar
  7. Balasubraniam, R., & Wing, A. M. (2002). The dynamics of standing balance. Trends in Cognitive Sciences, 6, 531–536.CrossRefGoogle Scholar
  8. Bouisset, S., & Duchene, J. L. (1994). Is body balance more perturbed by respiration in seating than in standing posture? Neuroreport, 5, 957–960.PubMedCrossRefGoogle Scholar
  9. Brooks, V. B. (1986). The neural basis of motor control. Oxford: Oxford University Press.Google Scholar
  10. Collet, C., & Guillot, A. (2009). Peripheral responses elicited by motor imagery: A window on central and peripheral nervous system relationships related to motor inhibition. In: S. P. Weingarten & H. O. Penat (Eds.), Cognitive psychology research developments (pp. 245–259). Nova Publishers.Google Scholar
  11. Collet, C., & Guillot, A. (2010). Autonomic nervous system activities during imagined movements. In: A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (Chap. 7, pp. 95–108). Oxford University Press.Google Scholar
  12. Dault, M. C., Frank, J. S., & Allard, F. (2001). Influence of a visuo-spatial, verbal and central executive working memory task on postural control. Gait and Posture, 14, 110–116.PubMedCrossRefGoogle Scholar
  13. Dault, M. C., Yardley, L., & Frank, J. S. (2003). Does articulation contribute to modifications of postural control during dual-task paradigms? Cognitive Brain Research, 16, 434–440.PubMedCrossRefGoogle Scholar
  14. Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Cognitive Brain Research, 3, 87–93.PubMedCrossRefGoogle Scholar
  15. Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R. P., et al. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.PubMedCrossRefGoogle Scholar
  16. Dickstein, R., Dunsky, A., & Marcovitz, E. (2004). Motor imagery for gait rehabilitation in post-stroke hemiparesis. Physical Therapy, 84, 1167–1177.PubMedGoogle Scholar
  17. Donker, S. F., Roerdink, M., Greven, A. J., & Beek, P. J. (2007). Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Experimental Brain Research, 181, 1–11.CrossRefGoogle Scholar
  18. Dunsky, A., Dickstein, R., Ariav, C., Deustch, J., & Marcovitz, E. (2006). Motor imagery practice in gait rehabilitation of chronic post-stroke hemiparesis: Four case-studies. International Journal of Rehabilitation Research, 29, 351–356.PubMedCrossRefGoogle Scholar
  19. Dunsky, A., Dickstein, R., Marcovitz, E., Levy, S., & Deutsch, J. E. (2008). Home-based motor imagery training for gait rehabilitation of people with chronic poststroke hemiparesis. Archives of Physical Medicine and Rehabilitation, 89, 1580–1588.PubMedCrossRefGoogle Scholar
  20. Ehrenfield, T., Guerraz, M., Thilo, K. V., Yardley, L., & Gresty, M. A. (2003). Posture and mental task performance when viewing a moving visual field. Cognitive Brain Research, 17, 140–153.CrossRefGoogle Scholar
  21. Gallese, V. (2005). “Being like me”: Self–other identity, mirror neurons and empathy. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From cognitive neuroscience to social science (Vol. 1, pp. 101–118). Cambridge, MA: MIT Press.Google Scholar
  22. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends Cognitive Sciences, 2, 493–501.CrossRefGoogle Scholar
  23. Grush, R. (2004). The emulation theory of representation. Behavioral and Brain Sciences, 27, 347–442.Google Scholar
  24. Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37, 76–84.CrossRefGoogle Scholar
  25. Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual vs. kinesthetic imagery: An fMRI study. Human Brain Mapping, 30, 2157–2172.PubMedCrossRefGoogle Scholar
  26. Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., & Collet, C. (2007). Muscular responses during motor imagery as a function of muscle contraction types. International Journal of Psychophysiology, 66, 18–27.PubMedCrossRefGoogle Scholar
  27. Hamel, M. F., & Lajoie, Y. (2005). Mental imagery. Effects on static balance and attentional demands of the elderly. Aging Clinical and Experimental Research, 17, 223–228.PubMedGoogle Scholar
  28. Harris, K. S., & Robinson, W. J. (1986). The effect of skill level on EMG activity during internal and external imagery. Journal of Sport Psychology, 8, 105–111.Google Scholar
  29. Hasan, S. S., Deborah, W. R., Dennis, C. S., Ashmead, D. H., Steven, W. P., & Richard, G. S. (1996). Simultaneous measurement of body center of pressure and center of gravity during upright stance. Gait and Posture, 4, 11–20.CrossRefGoogle Scholar
  30. Hunter, M. C., & Hoffman, M. A. (2001). Postural control: Visual and cognitive manipulations. Gait and Posture, 13, 41–48.PubMedCrossRefGoogle Scholar
  31. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral Brain Science, 17, 187–245.CrossRefGoogle Scholar
  32. Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2010). Multimodal images in the brain. In: Guillot A., & Collet C. (Eds), The neurophysiological foundations of mental and motor imagery (pp. 3–16). Oxford University Press.Google Scholar
  33. Kuo, A. D. (2005). An optimal state estimation models of sensory integration in human postural balance. Journal of Neural Engineering, 2, 235–249.CrossRefGoogle Scholar
  34. Lajoie, Y., Teasdale, N., Bard, C., & Fleury, M. (1993). Attentional demand for static and dynamic equilibrium. Experimental Brain Research, 97, 139–144.CrossRefGoogle Scholar
  35. Le Clair, K., & Riach, C. (1996). Postural stability measures: What to measure and how long? Clinical Biomechanics, 11, 176–178.PubMedCrossRefGoogle Scholar
  36. Le Pellec, A., & Maton, B. (2000). Anticipatory postural adjustments depend on final equilibrium and task complexity in vertical high jump movements. Journal of Electromyography and Kinesiology, 10, 171–178.PubMedCrossRefGoogle Scholar
  37. Le Pellec, A., & Maton, B. (2002). Initiation of a vertical jump: The human body’s upward propulsion depends on control of forward equilibrium. Neuroscience Letters, 323, 183–186.PubMedCrossRefGoogle Scholar
  38. Lebon, F., Guillot, A., Rouffet, D., & Collet, C. (2008). EMG correlates different types of muscular contraction during motor imagery. Neuroscience Letters, 435, 181–185.PubMedCrossRefGoogle Scholar
  39. Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: The influence of posture and perspective. Experimental Brain Research, 194, 233–243.CrossRefGoogle Scholar
  40. Marsh, A. P., & Geel, S. E. (2000). The effect of age on the attentional demands of postural control. Gait and Posture, 12, 105–113.PubMedCrossRefGoogle Scholar
  41. Maylor, E. A., Allison, S., & Wing, A. M. (2001). Effects of spatial and non-spatial cognitive activity on postural stability. British Journal of Psychology, 92, 319–338.CrossRefGoogle Scholar
  42. McNevin, N. H., & Wulf, G. (2002). Attentional focus on supra-postural tasks affects postural control. Human Movement Science, 21, 187–202.PubMedCrossRefGoogle Scholar
  43. Morasso, P. G., Baratto, L., Capra, R., & Spada, G. (1999). Internal models in the control of posture. Neural Networks, 12, 1173–1180.PubMedCrossRefGoogle Scholar
  44. Newell, K. M., van Emmerik, R. E. A., Lee, D., & Sprague, R. L. (1993). On postural stability and variability. Gait and Posture, 1, 225–230.CrossRefGoogle Scholar
  45. Norrie, R. G., Maki, B. E., Staines, W. R., & Mc Ilroy, W. E. (2002). The time course of attention shifts following perturbation of upright stance. Experimental Brain Research, 146, 315–321.CrossRefGoogle Scholar
  46. Pellecchia, G. L. (2003). Postural sway increases with attentional demands of concurrent cognitive tasks. Gait and Posture, 18, 29–34.PubMedCrossRefGoogle Scholar
  47. Redfern, M. S., Jennings, J. R., Martin, C., & Furman, J. M. (2001). Attention influences sensory integration for postural control in older adults. Gait and Posture, 14, 211–216.PubMedCrossRefGoogle Scholar
  48. Riley, M. A., Baker, A. A., & Schimt, J. M. (2003). Inverse relation between postural variability and difficulty of a concurrent short-term memory task. Brain Research Bulletin, 62, 191–195.PubMedCrossRefGoogle Scholar
  49. Rodrigues, E. C., Imbiriba, L. A., Leite, G. R., Magahlaes, J., Volchan, E., & Vargas, C. D. (2003). Mental simulation strategy affects postural control. Review Brasileiro de Psiquiatria, 25, 33–35.Google Scholar
  50. Rodrigues, E. C., Lemos, T., Gouvea, E., Volchan, L. A., Imbiriba, L. A., & Vargas, C. D. (2010). Kinesthetic motor imagery modulates body sway. Neuroscience, 169, 743–750.PubMedCrossRefGoogle Scholar
  51. Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A PET investigation of agency. Nature Neuroscience, 4, 546–550.PubMedGoogle Scholar
  52. Shumway-Cook, A., Woollacott, M., Kerns, K. A., & Baldwin, M. (1997). The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. Journal of Gerontology: Medical Sciences, 52, 232–240.Google Scholar
  53. Simoneau, M., Teasdale, N., Bourdin, C., Bard, C., Fleury, M., & Nougier, V. (1999). Aging and postural control: Postural perturbations caused by changing the visual anchor. Journal of American Geriatrics Society, 47, 235–240.Google Scholar
  54. Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neutrally dissociable mental processes. Journal of Cognitive Neuroscience, 13, 910–919.PubMedCrossRefGoogle Scholar
  55. Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. L. (2004). Fine modulation in network activation during motor execution and motor imagery. Cerebral Cortex, 14, 1246–1255.PubMedCrossRefGoogle Scholar
  56. Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 168, 157–164.CrossRefGoogle Scholar
  57. Stoffregen, T. A., Smart, L. J., Bardy, B. G., & Pagulayan, R. J. (1999). Postural stabilization of looking. Journal of Experimental Psychology, 25, 1641–1658.Google Scholar
  58. Teasdale, N., Bard, C., Larue, J., & Fleury, M. (1993). On the cognitive penetrability of postural control. Experimental Aging Research, 19, 1–13.PubMedCrossRefGoogle Scholar
  59. Teasdale, N., & Simoneau, M. (2001). Attentional demands for postural control: The effects of aging and sensory reintegration. Gait and Posture, 14, 203–210.PubMedCrossRefGoogle Scholar
  60. Vuillerme, N., Nougier, V., & Teasdale, N. (2000). Effects of a reaction time task on postural control in humans. Neuroscience Letters, 291, 77–80.PubMedCrossRefGoogle Scholar
  61. Wang, Y., & Morgan, W. P. (1992). The effect of imagery perspectives on the psychophysiological responses to imagined exercise. Behavioural Brain Research, 52, 167–174.PubMedCrossRefGoogle Scholar
  62. Winter, D. A., Patla, A. E., Prince, F., Ishac, M., & Gielo-Perczak, K. (1998). Stiffness control of balance in quiet standing. Journal of Neurophysiology, 80, 1211–1221.PubMedGoogle Scholar
  63. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 1212–1217.PubMedCrossRefGoogle Scholar
  64. Woollacott, M., & Shumway-Cook, A. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait and Posture, 16, 1–14.PubMedCrossRefGoogle Scholar
  65. Wulf, G., McNevin, N. H., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. The Quarterly Journal of Experimental Psychology, 54A, 1143–1154.Google Scholar
  66. Yardley, L., Gardney, M., Bronstein, A., Davies, R., Buckwell, D., & Luxon, L. (2001). Interference between postural control and mental task performance in patients with vestibular disorders and healthy controls. Journal of Neurology, Neurosurgery and Psychiatry, 71, 48–52.CrossRefGoogle Scholar
  67. Yardley, L., Gardney, M., Leadbetter, A., & Lavie, N. (1999). Effect of articulatory and mental tasks on postural control. Neuroreport, 10, 215–219.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centre de Recherche et d’Innovation sur le Sport (EA 647 - P3M)Université Claude Bernard Lyon IVilleurbanne CedexFrance

Personalised recommendations