Applied Psychophysiology and Biofeedback

, Volume 36, Issue 1, pp 15–25 | Cite as

Component-Specific Self-Regulation of Slow Cortical Potentials and its Effect on Behavior: An Exploratory Study

Article

Abstract

In the present study, the possibility of component-specific self-regulation of the contingent negative variation (CNV) and the functional significance of the iCNV (initial or early CNV component) and tCNV (terminal or late CNV component) were investigated in twenty-four healthy volunteers. The subjects were able to achieve control over a particular CNV component within four sessions. Regulation of the tCNV was more successful than for the iCNV. Specific control over iCNV was associated with strategies mainly related to the pre-stimulus interval or the warning stimulus (S1), while regulation of the tCNV was assigned to activities during the whole interstimulus interval or around the imperative stimulus (S2). It can be concluded that component-specific regulation of the CNV can be used in studies of the psychophysiological meaning of this potential, representing different stages of information processing. The role of cortical pre-activation in the generation of the iCNV and the phasic performance-directed activation of the tCNV can be hypothesized.

Keywords

Contingent negative variation Self-regulation Early component Late component 

Notes

Acknowledgments

We are indebted to O. Yakovlev for his help in data collection and analysis.

References

  1. Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Review, 70, 1–41.Google Scholar
  2. Birbaumer, N., Roberts, L. E., Lutzenberger, W., Rockstroh, B., & Elbert, T. (1992). Area-specific self-regulation of slow cortical potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology, 84, 353–361.PubMedCrossRefGoogle Scholar
  3. Böcker, K. B. E., Timsit-Berthier, M., Schoenen, J., & Brunia, C. H. M. (1990). Contingent negative variation in migraine. Headache, 30, 604–609.PubMedCrossRefGoogle Scholar
  4. Brody, S., Rau, H., Köhler, F., Schupp, H., Lutzenberger, W., & Birbaumer, N. (1994). Slow cortical potential biofeedback and the startle reflex. Biofeedback and Self-Regulation, 19, 1–11.PubMedCrossRefGoogle Scholar
  5. Courchesne, E., Elmasian, R., & Courchesne, R. (1987). Electrophysiological correlates of cognitive procesing: P3b and Nc. Basic, clinical, and developmental research. In S. R. Holliday & R. Butler (Eds.), A textbook of clinical neurophysiology (pp. 645–676). New York: Wiley.Google Scholar
  6. Elbert, T. (1993). Slow cortical potentials reflect the regulation of cortical excitability. In W. C. McCallum & H. Curry (Eds.), Slow potentials in the human brain (pp. 235–252). New York: Plenum Press.Google Scholar
  7. Elbert, T., & Rockstroh, B. (1987). Threshold regulation—a key to the understanding the combined dynamics of EEG and event-related potentials. Journal of Psychophysiology, 4, 317–333.Google Scholar
  8. Gaillard, A. W. (1986). The CNV as an index of response preparation. In W. C. McCallum, R. Zappoli, & F. Denoth (Eds.), Cerebral psychophysiology: Studies in event-related potentials (pp. 196–206). Amsterdam: Elsevier.Google Scholar
  9. Kimmel, H. D., Van Olst, E. H., & Orlebeke, J. F. (1979). The orienting reflex in humans. Hilldale, NJ: Erlbaum.Google Scholar
  10. Kropp, P., & Gerber, D. (1993). Is increased amplitude of contingent negative variation in migraine due to cortical hyperactivity or to reduced habituation? Cephalalgia, 13, 37–41.PubMedCrossRefGoogle Scholar
  11. Kropp, P., & Gerber, W. D. (1995). Contingent negative variation during migraine attack and interval: Evidence for normalisation of slow cortical potentials during the attack. Cephalalgia, 15, 123–128.PubMedCrossRefGoogle Scholar
  12. Kropp, P., & Gerber, W. D. (1998). Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neuroscience Letters, 257, 73–76.PubMedCrossRefGoogle Scholar
  13. Kropp, P., Gerber, W. D., & Göbel, H. (1999a). Test-retest variability of CNV. Applied Psychophysiology and Biofeedback (in press).Google Scholar
  14. Kropp, P., Siniatchkin, M., & Gerber, W. D. (1997b). Migraine–evidence for a disturbance of cerebral maturation in man? Neuroscience Letters, 276, 181–184.CrossRefGoogle Scholar
  15. Loveless, N. E. (1983). The orienting response and evoked potentials in man. In D. Siddle (Ed.), Orienting and habituation (pp. 71–108). Chichester, UK: Wiley.Google Scholar
  16. Lutzenberger, W., Elbert, T., Rockstroh, B., & Birbaumer, N. (1982). Biofeedback produced slow brain potentials and task performance. Biological Psychology, 14, 99–111.PubMedCrossRefGoogle Scholar
  17. Lutzenberger, W., Haag, G., Birbaumer, N., & Stegagno, L. (1980). Biofeedback langsamer kortikaler Potentiale (LKP): Der Zusammenhang von LKP und Reaktionslatenz bei Patienten mit psychosomatischen Störungen. Medizinische Psychologie, 6, 140–151.Google Scholar
  18. Lutzenberger, W., Roberts, L. E., & Birbaumer, N. (1993). Memory performance and area-specific self-regulation of slow cortical potentials: Dual-task interference. International Journal of Psychophysiology, 15, 217–226.PubMedCrossRefGoogle Scholar
  19. Maertens de Noordhout, A., Timsit-Berthier, M., Timsit, M., & Schoenen, J. (1988). Effects of beta blockade on contingent negative variation in migraine. Annals of Neurology, 21, 111–112.CrossRefGoogle Scholar
  20. McCallum, W. C. (1986). How many separate processes constitute the CNV? In W. C. McCallum, R. Zappoli, & F. Denoth (Eds.), Cerebral psychophysiology: Studies in event-related potentials (pp. 192–196). Amsterdam: Elsevier.Google Scholar
  21. McCallum, W. C. (1988). Potentials related to expectancy, preparation and motor activity. In T. W. Picton (Ed.), Human event-related potentials. EEG Handbook (pp. 427–534). Amsterdam: Elsevier Science Publishers B.V.Google Scholar
  22. Pribram, K., & McGuinness, D. (1975). Arousal, activation and effort in the control of attention. Psychological Review, 82, 116–149.PubMedCrossRefGoogle Scholar
  23. Roberts, L. E., Birbaumer, N., Rockstroh, B., Lutzenberger, W., & Elbert, T. (1989). Self-report during feedback regulation of slow cortical potentials. Psychophysiology, 26, 392–403.PubMedCrossRefGoogle Scholar
  24. Rockstroh, B. (1987). Operant control of slow brain potentials. In J. N. Hengtgen, D. Hellhammer, & G. Huppmann (Eds.), Advanced methods in psychobiology (pp. 179–190). New York: C.J. Hogrefe, Inc.Google Scholar
  25. Rockstroh, B., Elbert, T., Birbaumer, N., & Lutzenberger, W. (1990). Biofeedback-produced hemispheric asymmetry of slow cortical potentials and its behavioral effects. International Journal of Psychophysiology, 9, 151–165.PubMedCrossRefGoogle Scholar
  26. Rockstroh, B., Elbert, T., Birbaumer, N., Wolf, P., Düchting-Röth, A., Reker, M., et al. (1993). Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14, 63–72.PubMedCrossRefGoogle Scholar
  27. Rockstroh, B., Elbert, T., Canavan, A. G. M., Lutzenberger, W., & Birbaumer, N. (1989). Slow cortical potentials and behavior. Munich, FRG: Urban & Schwarzenberg.Google Scholar
  28. Rockstroh, B., Elbert, T., Lutzenberger, W., & Birbaumer, N. (1980). Slow cortical potentials and response speed. In H. H. Kornhuber & L. Deecke (Eds.), Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use (pp. 431–434). North-Holland: Elsevier.Google Scholar
  29. Rockstroh, B., Elbert, T., Lutzenberger, W., & Birbaumer, B. (1982). The effect of slow cortical potentials on response speed. Psychophysiology, 19, 211–217.PubMedCrossRefGoogle Scholar
  30. Rohrbaugh, W. J., & Gaillard, A. G. (1983). Sensory and motor aspects of the contingent negative variation. In A. G. Gaillard & W. Ritter (Eds.), Tutorials in event-related potential research: Endogenous components (pp. 269–310). Amsterdam: Elsevier.CrossRefGoogle Scholar
  31. Schoenen, J. (1998). The pathophysiology of migraine: A review based on the literature and on personal contributions. Functional Neurology, 1, 7–16.Google Scholar
  32. Siddle, D. (1983). Orienting and habituation. Chichester, UK: Wiley.Google Scholar
  33. Simons, R. F., Rockstroh, B., Elbert, T., Fiorito, E., Lutzenberger, W., & Birbaumer, N. (1987). Evokation and habituation of autonomic and event-related potential responses in a non-signal environment. Journal of Psychophysiology, 1, 45–60.Google Scholar
  34. Siniatchkin, M., Gerber, W. D., Kropp, P., & Vein, A. (1999). How the brain anticipates an attack–a study of neurophysiological periodicity in migraine. Functional Neurology, 14, 69–77.PubMedGoogle Scholar
  35. Siniatchkin, M., Gerber, W. D., & Vein, A. (1998a). Clinical efficacy and central mechanisms of cyclandelate in migraine: A double-blind placebo-controlled study. Functional Neurology, 13, 47–56.PubMedGoogle Scholar
  36. Siniatchkin, M., Hierundar, A., Kropp, P., Kuhnert, R., Gerber, W. D., & Stephani, U. (2000a). Self-regulation of slow cortical potentials in children with migraine: An exploratory study. Applied Psychophysiology and Biofeedback, 25, 13–32.PubMedCrossRefGoogle Scholar
  37. Siniatchkin, M., Kirsch, E., Kropp, P., Gerber, W. D., & Stephani, U. (2000b). Contingent negative variation in migraine families. Cephalalgia, 20, 881–892.PubMedCrossRefGoogle Scholar
  38. Siniatchkin, M., Kropp, P., Gerber, W. D., & Vein, A. (1998b). Contingent negative variation in patients with chronic daily headache. Cephalalgia, 18, 565–569.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University Hospital of Paediatric NeurologyChristian-Albrechts-University of KielKielGermany
  2. 2.Department of Medical PsychologyChristian-Albrechts-University of KielKielGermany

Personalised recommendations