Identifying Indices of Learning for Alpha Neurofeedback Training



Neurofeedback has been around for decades and has applications for both clinical and healthy populations yet there is no standard method for measuring learning or a way of defining successful learning. Thus the aim of this study was to focus on alpha neurofeedback and examine changes in three different measures: amplitude, percent time, and integrated alpha, across four methods: within sessions, across sessions, within sessions compared to baseline, and across sessions compared to baseline. Participants completed 10 weekly sessions of eyes open alpha (8–12 Hz) neurofeedback training (NFT) at Pz. Whilst all three measures showed changes within sessions, the inclusion of baselines revealed that such changes represented a return to baseline levels rather than an increase in alpha. Changes across sessions were only evident in amplitude and inclusion of baseline showed that NFT did not elicit any changes beyond baseline levels. Given this a case is made for incorporating baseline measures when attempting to identify evidence of learning. It is also suggested that both amplitude and percent time measures are used independently rather than incorporate them into a more conservative and less sensitive integrated measure. Finally, focusing on within sessions changes may be a more useful approach in identifying changes resulting from NFT.


Alpha neurofeedback Learning indices Amplitude Percent time Baseline 


  1. Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High resolution EEG investigation of meditation. Neuroscience Letters, 310, 57–60.CrossRefPubMedGoogle Scholar
  2. Angelakis, E., Stathopoulou, S., Frymiare, J. L., Green, D. L., Lubar, J. F., & Kounios, J. (2007). EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical Neuropsychologist, 21, 110–129.CrossRefPubMedGoogle Scholar
  3. Butnik, S. M. (2005). Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. Journal of Clinical Psychology, 61, 621–625.CrossRefPubMedGoogle Scholar
  4. Cho, M. K., Jang, H. S., Jeong, S.-H., Jang, I.-S., Choi, B.-J., & Lee, M.-G. T. (2008). Alpha neurofeedback improves the maintaining ability of alpha activity. Neuroreport, 19(3), 315–317.CrossRefPubMedGoogle Scholar
  5. Cooper, N. R., Croft, R. J., Dominey, S. J. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. International Journal of Psychophysiology, 47, 65–74.CrossRefPubMedGoogle Scholar
  6. Cott, A., Pavloski, R. P., & Black, A. H. (1981a). Operant conditioning and discrimination: Some methodological limitations inherent in response discrimination experiments. Journal of Experimental Psychology: General, 110(3), 398–414.CrossRefGoogle Scholar
  7. Cott, A., Pavloski, R. P., & Goldman, J. A. (1981b). Cortical alpha rhythm, biofeedback, and the determinants of subjective state. Journal of Experimental Psychology: General, 110(3), 381–397.CrossRefGoogle Scholar
  8. DeGood, D. E., & Valle, R. S. (1978). Self-reported alcohol and nicotine use and the ability to control occipital EEG in a biofeedback situation. Addictive Behaviors, 3, 13–18.CrossRefPubMedGoogle Scholar
  9. Dempster, T., & Vernon, D. (2008). The effect of distinct training schedules on participants’ ability to alter their alpha activity via neurofeedback: A preliminary study. Revista Espanola De Neuropsicologia, 10(1), 176.Google Scholar
  10. Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115, 2452–2460.CrossRefPubMedGoogle Scholar
  11. Fell, J., Elfadil, H., Klaver, P., Röschke, J., Elger, C. E., & Fernández, G. (2002). Covariation of spectral and nonlinear EEG measures with alpha biofeedback. International Journal of Neuroscience, 112, 1047–1057.CrossRefPubMedGoogle Scholar
  12. Gertz, J., & Lavie, P. (1983). Biological rhythms in arousal indices: A potential confounding effect in EEG biofeedback. Psychophysiology, 20(6), 690–695.CrossRefPubMedGoogle Scholar
  13. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30(1), 1–10.CrossRefPubMedGoogle Scholar
  14. Hardt, J. V., & Kamiya, J. (1976). Conflicting results in EEG alpha feedback studies: Why amplitude integration should replace percent time. Biofeedback and Self-Regulation, 1(1), 63–75.CrossRefPubMedGoogle Scholar
  15. Hoedlmoser, K., Pecherstorfer, T., Gruber, G., Anderer, P., Doppelmayr, M., Klimesch, W., et al. (2008). Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning. Sleep, 31(10), 1401–1408.PubMedGoogle Scholar
  16. Knox, S. S. (1982). Alpha enhancement, autonomic activation, and extraversion. Biofeedback and Self-Regulation, 7(4), 421–433.CrossRefPubMedGoogle Scholar
  17. Kondo, C. Y., Travis, T. A., Knott, J. R., & Bean, J. A. (1979). Effects of true and inverted feedback on integrated occipital alpha. The Journal of Psychology, 102, 101–106.PubMedGoogle Scholar
  18. Lynch, J. J., Paskewitz, D. A., & Orne, M. T. (1974). Some factors in the feedback control of human alpha rhythm. Psychosomatic Medicine, 36(5), 399–410.PubMedGoogle Scholar
  19. Orenstein, H. B., & McWilliams, B. (1976). Variations in electroencephalographic alpha activity under conditions of differential lighting and auditory feedback. Biofeedback and Self-Regulation, 1(4), 423–432.CrossRefPubMedGoogle Scholar
  20. Paskewitz, D. A., & Orne, M. T. (1973). Visual effects on alpha feedback training. Science, 181, 360–363.CrossRefPubMedGoogle Scholar
  21. Plotkin, W. B. (1976). On the self-regulation of the occipital alpha rhythm: Control strategies, states of consciousness, and the role of physiological feedback. Journal of Experimental Psychology: General, 105(1), 66–99.CrossRefGoogle Scholar
  22. Plotkin, W. B. (1978). Long-term eyes-closed alpha-enhancement training: Effects on alpha amplitudes and on experiential state. Psychophysiology, 15(1), 40–52.CrossRefPubMedGoogle Scholar
  23. Plotkin, W. B., & Rice, K. M. (1981). Biofeedback as a placebo: Anxiety reduction facilitated by training in either suppression or enhancement of alpha brainwaves. Journal of Consulting and Clinical Psychology, 49(4), 590–596.CrossRefPubMedGoogle Scholar
  24. Putnam, J. (2000). The effects of brief, eyes-open alpha brain wave training with audio and video relaxation induction of 77 army reservists. Journal of Neurotherapy, 4(1), 17–28.CrossRefGoogle Scholar
  25. Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35.CrossRefPubMedGoogle Scholar
  26. Travis, T. A., Kondo, C. Y., & Knott, J. R. (1975). Alpha enhancement research: A review. Biological Psychiatry, 10(1), 69–89.PubMedGoogle Scholar
  27. Tyson, P. D. (1987). Task-related stress and EEG alpha biofeedback. Biofeedback and Self-Regulation, 12(2), 105–119.CrossRefPubMedGoogle Scholar
  28. Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Applied Psychophysiology and Biofeedback, 30(4), 347–364.CrossRefPubMedGoogle Scholar
  29. Vernon, D. (2008). Neurofeedback: Using computer technology to alter brain functioning. In F. Orsucci & N. Sala (Eds.), Reflexing interfaces: The complex coevolution of information technology ecosystems (pp. 94–108). New York: IGI.Google Scholar
  30. Vernon, D., & Gruzelier, J. (2008). Electroencephalographic biofeedback as a mechanism to alter mood, creativity and artistic performance. In B. N. DeLuca (Ed.), Mind–body and relaxation research focus (pp. 149–164). Nova Science.Google Scholar
  31. Yamaguchi, H. (1980). Characteristics of alpha-enhancement biofeedback training with eyes closed. Tohoku Psychologica Folia, 39(1–4), 40–50.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Applied Social Sciences (Psychology Department)Canterbury Christ Church UniversityCanterbury, KentUK

Personalised recommendations