The Need for Individualization in Neurofeedback: Heterogeneity in QEEG Patterns Associated with Diagnoses and Symptoms

Article

Abstract

Very diverse assessment procedures are utilized by neurofeedback practitioners, many of which are not based on careful examination of raw EEG data followed by scientifically objective quantitative EEG (QEEG) database comparisons. Research is reviewed demonstrating the great heterogeneity in the EEG patterns associated with various diagnoses and symptoms. The fact that most patients qualify for dual diagnoses, with co-morbid psychiatric and medical conditions present, complicates the ability of clinicians to estimate what electrophysiological patterns may be associated with symptoms. In such cases treatment planning is characterized by a great deal of guesswork and experimentation. Peer reviewed publications have documented that neurofeedback treatment can sometimes be associated with both transient side effects as well as more serious negative effects. It is believed that the lack of comprehensive and objective assessment of brain functioning may increase the risk of neurofeedback either being ineffective or causing iatrogenic harm. QEEG provides reliable, non-invasive, objective, culture-free and relatively low cost evaluation of brain functioning, permitting individualization of treatment and added liability protection.

Keywords

QEEG Neurofeedback EEG biofeedback Iatrogenic effects Negative effects 

References

  1. Ahn, H., Prichep, L. S., John, E. R., Baird, H., Trepetin, M., & Kaye, H. (1980). Developmental equations reflect brain dysfunction. Science, 210, 1980.CrossRefGoogle Scholar
  2. Arruda, J. E., Weiler, M. D., Valentino, D., Willis, W. G., Rossi, J. S., Stern, R. A., et al. (1996). A guide for applying principal-components analysis and confirmatory factor analysis to quantitative electroencephalogram data. International Journal of Psychophysiology, 23(1–2), 63–81.CrossRefPubMedGoogle Scholar
  3. Ayers, M. E. (1999). Assessing and treating open head trauma, coma, and stroke using real-time digital EEG neurofeedback. In J. R. Evans & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback (pp. 203–222). New York: Academic Press.CrossRefGoogle Scholar
  4. Barkley, R. A. (1998). Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment (2nd ed.). New York: Guilford.Google Scholar
  5. Bergin, A. E., & Lambert, M. J. (1978). The evaluation of therapeutic outcomes. In S. L. Garfield & A. E. Bergin (Eds.), Handbook of psychotherapy and behavior change: An empirical analysis (pp. 139–189). New York: John Wiley & Sons.Google Scholar
  6. Boutros, N. N., Torello, M., & McGlashan, T. H. (2003). Electrophysiological aberrations in borderline personality disorder: State of the evidence. Journal of Neuropsychiatry and Clinical Neurosciences, 15, 145–154.PubMedGoogle Scholar
  7. Burgess, A., & Gruzelier, J. (1993). Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalography and Clinical Neurophysiology, 86(4), 219–223.CrossRefPubMedGoogle Scholar
  8. Chabot, R. J., Merkin, H., Wood, L. M., Davenport, T. L., & Serfontein, G. (1996). Sensitivity and specificity in children with attention deficit or specific developmental learning disorders. Clinical Electroencephalography, 27(1), 26–34.PubMedGoogle Scholar
  9. Chabot, R. J., Orgill, A. A., Crawford, G., Harris, M. J., & Serfontein, G. (1999). Behavioral and electrophysiological predictors of treatment response to stimulants in children with attention disorders. Journal of Child Neurology, 14(6), 343–351.CrossRefPubMedGoogle Scholar
  10. Chabot, R. J., & Serfontein, G. (1996). Quantitative electroencephalographic profiles of children with attention deficit disorder. Biological Psychiatry, 40, 951–963.CrossRefPubMedGoogle Scholar
  11. Chartier, D. (2001). An adverse neurofeedback reaction, or, there is no such thing as a neurofeedback “demo”. Journal of Neurotherapy, 5(3), 68–69.Google Scholar
  12. Clarke, A., Barry, R., McCarthy, R., & Selikowitz, M. (1998). EEG analysis in attention-deficit/hyperactivity disorder: a comparative study of two subtypes. Psychiatry Research, 81, 19–29.CrossRefPubMedGoogle Scholar
  13. Clarke, A., Barry, R., McCarthy, R., & Selkowitz, M. (2001a). EEG differences in two subtypes of attention-deficit/hyperactivity disorder. Psychophysiology, 38, 212–221.CrossRefPubMedGoogle Scholar
  14. Clarke, A., Barry, R., McCarthy, R., & Selikowitz, M. (2001b). Excess beta in children with attention-deficit/hyperactivity disorder: an atypical electrophysiological group. Psychiatry Research, 103, 205–218.CrossRefPubMedGoogle Scholar
  15. Corsi-Cabrera, M., Solis-Ortiz, S., & Guevara, M. A. (1997). Stability of EEG inter-and intrahemispheric correlation in women. Electroencephalography and Clinical Neurophysiology, 201(3), 248–255.CrossRefGoogle Scholar
  16. Donaldson, M., & Donaldson, S. (2006). The assessment of brain wave activity in fibromyalgia using quantitative electroencephalography techniques. Biofeedback, 34(3), 114–120.Google Scholar
  17. Donaldson, S., Sella, G., & Mueller, H. (1998). Fibromyalgia: A retrospective study of 252 consecutive referrals. Canadian Journal of Clinical Medicine, 5(6), 116–127.Google Scholar
  18. Fein, G., Galin, D., Yingling, C. D., Johnstone, J., & Nelson, M. A. (1984). EEG spectra in 9–13-year-old boys are stable over 1–3 years. Electroencephalography and Clinical Neurophysiology, 58, 517–518.CrossRefPubMedGoogle Scholar
  19. Gasser, T., Bacher, P., & Steinberg, H. (1985). Test-retest reliability of spectral parameters of the EEG. Electroencephalography and Clinical Neurophysiology, 60(4), 312–319.CrossRefPubMedGoogle Scholar
  20. Gruzelier, J. (2000). Self regulation of electrocortical activity in schizophrenia and schizotypy: A review. Clinical Electroencephalography, 31(1), 23–29.PubMedGoogle Scholar
  21. Gruzelier, J., Hardman, E., Wild, J., Zaman, R., Nagy, A., & Hirsch, S. (1999). Learned control of interhemispheric slow potential negativity in schizophrenia. International Journal of Psychophysiology, 34, 341–348.CrossRefPubMedGoogle Scholar
  22. Hamilton-Bruce, M. A., Boundy, K. L., & Purdie, G. H. (1991). Interoperator variability in quantitative electroencephalography. Clinical & Experimental Neurology, 28, 219–224.Google Scholar
  23. Hammond, D. C. (2006). Quantitative electroencephalography patterns associated with medical conditions. Biofeedback, 34(3), 87–94.Google Scholar
  24. Hammond, D. C., & Kirk, L. (2008). First, do no harm: Adverse effects and the need for practice standards in neurofeedback. Journal of Neurotherapy, 12(1), 79–88.CrossRefGoogle Scholar
  25. Hammond, D. C., Walker, J., Hoffman, D., Lubar, J. F., Trudeau, D., Gurnee, R., et al. (2004). Standards for the use of QEEG in neurofeedback: A position paper of the International Society for Neuronal Regulation. Journal of Neurotherapy, 8(1), 5–26.CrossRefGoogle Scholar
  26. Harmony, T., Fernandez, T., Rodriguez, M., Reyes, A., Marosi, E., & Bernal, J. (1993). Test-retest reliability of EEG spectral parameters during cognitive tasks: II. Coherence. International Journal of Neuroscience, 68(3–4), 263–271.CrossRefPubMedGoogle Scholar
  27. Hoffman, D. A. (2006). “First, do no harm”—A basic tenet in jeopardy. Journal of Neurotherapy, 10(4), 53–61.CrossRefGoogle Scholar
  28. Howorka, K., Pumpria, J., Saletu, B., Anderer, P., Krieger, M., & Schabmann, A. (2000). Decrease of vigilance assessed by EEG-mapping in Type I diabetic patients with history of recurrent severe hypoglycaemia. Psychoneuroendocrinology, 25, 85–105.CrossRefPubMedGoogle Scholar
  29. Hughes, J. R., & John, E. R. (1999). Conventional and quantitative electroencephalography in psychiatry. Journal of Neuropsychiatry & Clinical Neuroscience, 11, 190–208.Google Scholar
  30. Jensen, P. S., Hinshaw, S. P., Swanson, J. M., Greenhill, L. L., Conners, C. K., Arnold, L. E., et al. (2001). Findings from the multimodal treatment study of ADHD (MTA): Implications and applications for primary care providers. Developmental & Behavioral Pediatrics, 22(1), 60–73.Google Scholar
  31. John, E. R., Prichep, L. S., Ahn, H., Easton, P., Fridman, J., & Kaye, H. (1983). Neurometric evaluation of cognitive dysfunctions and neurological disorders in children. Progress in Neurobiology, 21, 239–290.CrossRefPubMedGoogle Scholar
  32. John, E. R., Prichep, L. S., Alper, K. R., et al. (1994). Quantitative electroencephalogical characteristics and subtyping of schizophrenia. Biological Psychiatry, 36, 801–826.CrossRefPubMedGoogle Scholar
  33. John, E. R., Prichep, L., & Easton, P. (1987). Normative data banks and neurometrics. Basic concepts. Methods and results of norm constructions. In A. S. Gevins & A. Redmonds (Eds.), Methods of analysis of brain electrical and magnetic signals (pp. 449–495). Amsterdam: Elsevier.Google Scholar
  34. John, E. R., Prichep, L. S., Friedman, J., & Easton, P. (1988). Neurometrics: Computer-assisted differential diagnosis of brain dysfunctions. Science, 293, 162–169.CrossRefGoogle Scholar
  35. John, E. R., Prichep, L. S., Winterer, G., Herrmann, W. M., diMichelle, F., Halper, J., et al. (2007). Electrophysiological subtypes of psychotic states. Acta Psychiatrica Scandinavia, 116, 17–35.CrossRefGoogle Scholar
  36. Jonkman, E. J., Poortvliet, D. C. J., Veering, M. M., deWeerd, A. W., & John, E. R. (1985). The use of neurometrics in the study of patients with cerebral ischemia. Electroencephalography & Cliinical Neurophysiology, 61, 333–341.CrossRefGoogle Scholar
  37. Kaye, H., John, E. R., Ahn, J., & Prichep, L. S. (1981). Neurometric evaluation of learning disabled children. International Journal of Neuroscience, 13, 15–25.CrossRefPubMedGoogle Scholar
  38. Kondacs, A., & Szabo, M. (1999). Long-term intra-individual variability of the background EEG in normals. Clinical Neurophysiology, 110, 1708–1716.CrossRefPubMedGoogle Scholar
  39. Korzekwa, M., Links, P., & Steiner, M. (1993). Biological markers in borderline personality disorder: New perspectives. Canadian Journal of Psychiatry, 38(suppl 1), S11–S15.Google Scholar
  40. Lahmeyer, H. W., Reynolds, C. F., Kupfer, D. J., et al. (1989). Biologic markers in personality disorder: A review. Journal of Clinical Psychiatry, 50, 217–225.PubMedGoogle Scholar
  41. Lubar, J. F. (1995). Neurofeedback for the management of attention-deficit/hyperactivity disorders. In M. S. Schwartz (Ed.), Biofeedback: A practitioner's guide (pp. 493–522). New York: Guilford.Google Scholar
  42. Lubar, J. F., Shabsin, H. S., Natelson, S. E., et al. (1981). EEG operant conditioning in intractible epileptics. Archives of Neurology, 38, 700–704.PubMedGoogle Scholar
  43. Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperactive child concurrent with training of the sensorimotor rhythm (SMR): A preliminary report. Biofeedback & Self-Regulation, 1(3), 293–306.CrossRefGoogle Scholar
  44. Lubar, J. F., & Shouse, M. N. (1977). Use of biofeedback in the treatment of seizure disorders and hyperactivity. Advances in Clinical Child Psychology, 1, 204–251.Google Scholar
  45. Lund, T. R., Sponheim, S. R., Iacono, W. G., & Clementz, B. A. (1995). Internal consistency reliability of resting EEG power spectra in schizophrenic and normal subjects. Psychophysiology, 32(1), 66–71.CrossRefPubMedGoogle Scholar
  46. McEvoy, L. K., Smith, M. E., & Gevins, A. (2000). Test-retest reliability in cognitive EEG. Clinical Neurophysiology, 111(3), 457–463.CrossRefPubMedGoogle Scholar
  47. Monastra, V. J. (2005). Electroencephalographic biofeedback (neurotherapy) as a treatment for attention deficit hyperactivity disorder: Rationale and empirical foundation. Child & Adolescent Psychiatric Clinics of North America, 14(1), 55–82.Google Scholar
  48. Monastra, V. J., Lubar, J. F., Linden, H., VanDeusen, P., Green, G., Wing, W., et al. (1999). Assessing attention deficit disorder via quantitative electroencephalography: An initial validation study. Neuropsychology, 13(3), 424–433.Google Scholar
  49. Mueller, H., Donaldson, S., Nelson, D., & Layman, M. (2001). Treatment of fibromyalgia incorporating EEG-driven stimulation: A clinical outcomes study. Journal of Clinical Psychology, 57(7), 933–952.CrossRefPubMedGoogle Scholar
  50. Othmer, S. (2005). Interhemispheric EEG training. Journal of Neurotherapy, 9(2), 87–96.CrossRefGoogle Scholar
  51. Pollock, V. E., Schneider, L. S., & Lyness, S. A. (1991). Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalography and Clinical Neurophysiology, 79(1), 20–26.CrossRefPubMedGoogle Scholar
  52. Prichep, L. S., Mas, F., Hollander, E., Liebowitz, M., John, E. R., Almas, M., et al. (1993). Quantitative electroencephalography (QEEG) subtyping of obsessive compulsive disorder. Psychiatry Research, 50(1), 25–32.PubMedGoogle Scholar
  53. Ritchlin, C. T., Chabot, R. J., Alper, K., Buyon, J., Belmont, H. M., Roubey, R., et al. (1992). Quantitative electroencephalography: A new approach to the diagnosis of cerebral dysfunction in systemic lupus erythematosus. Arthritis and Rheumatism, 35(11), 1330–1342.PubMedGoogle Scholar
  54. Salinsky, M. C., Oken, B. S., & Morehead, L. (1991). Test-retest reliability in EEG frequency analysis. Electroencephalography and Clinical Neurophysiology, 79(5), 382–392.CrossRefPubMedGoogle Scholar
  55. Satterfield, J. H., & Cantwell, D. P. (1974). CNS function and response to methylphenidate in hyperactive children. Psychopharmacology Bulletin, 10, 36–37.PubMedGoogle Scholar
  56. Schneider, F., Rockstroh, B., Heimann, H., et al. (1992). Self-regulation of slow cortical potentials in psychiatric patients: Schizophrenia. Biofeedback & Self-Regulation, 17, 277–292.CrossRefGoogle Scholar
  57. Suffin, S. C., & Emory, W. (1995). Neurometric subgroups in attentional and affective disorders and their association with pharmacotherapeutic outcome. Clinical Electroencephalography, 26(2), 76–83.PubMedGoogle Scholar
  58. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.CrossRefPubMedGoogle Scholar
  59. Van Dis, H., Corner, M., Dapper, R., Hanewald, G., & Kok, H. (1979). Individual differences in the human electroencephalogram during quiet wakefulness. Electroencephalography & Clinical Neurophysiology, 47, 87–94.Google Scholar
  60. Van Huffelen, A. C., Poortvliet, D. C., & Van der Wulp, C. J. (1984). Quantitative electroencephalography in cerebral ischemia. Detection of abnormalities in "normal" EEGs. Progress in Brain Research, 62, 3–28.Google Scholar
  61. Westmorland, B. (1993). The EEG in cerebral inflammatory processes. In E. Niedermeyer & F. Da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 291–304). New York: Williams & Wilkins.Google Scholar
  62. Yalom, I., & Lieberman, M. A. (1971). A study of encounter group casualties. Archives of General Psychiatry, 25, 16–30.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations