Applied Psychophysiology and Biofeedback

, Volume 34, Issue 3, pp 227–235 | Cite as

The Role of Intention to Conceal in the P300-based Concealed Information Test

  • Kenta Kubo
  • Hiroshi Nittono


The present study examined whether intention to conceal knowledge affects P300 amplitude and detection accuracy in the concealed information test. Eighteen university students were told to choose one card from five and to hide it. In the conceal condition, participants made an effort to leave their chosen card undetected by suppressing their brain response to it. In the transmit condition, they attempted to inform the experimenter of the chosen card by enhancing brain response to it. In the no secret condition, participants showed the chosen card to the experimenter beforehand and lost their motivation to conceal it. The difference in P300 amplitude between the chosen and unchosen cards was significant only in the conceal and transmit conditions. The results suggest that a larger P300 amplitude for the chosen card was not due to a deception-specific process but rather to increased significance of the item caused by additional processing.


Detection of deception Memory P300 Concealed information test Intention 



Part of this study was presented at a poster session of the Second International Workshop on Kansei (March 7, 2008, Fukuoka, Japan) and at a symposium of the 14th World Congress of Psychophysiology (September 9, 2008, St. Petersburg, Russia). We thank J. P. Rosenfeld for his comments on the ERP data.


  1. Abe, N., Suzuki, M., Tsukiura, T., Mori, E., Yamaguchi, K., Itoh, M., et al. (2006). Dissociable roles of prefrontal and anterior cingulate cortices in deception. Cerebral Cortex (New York, NY), 16, 192–199. doi: 10.1093/cercor/bhi097.CrossRefGoogle Scholar
  2. Allen, J. J., & Iacono, W. G. (1997). A comparison of methods for the analysis of event-related potentials in deception detection. Psychophysiology, 34, 234–240. doi: 10.1111/j.1469-8986.1997.tb02137.x.PubMedCrossRefGoogle Scholar
  3. Allen, J. J., Iacono, W. G., & Danielson, K. D. (1992). The identification of concealed memories using the event-related potentials and implicit behavioral measures: A methodology for prediction in the face of individual differences. Psychophysiology, 29, 504–522. doi: 10.1111/j.1469-8986.1992.tb02024.x.PubMedCrossRefGoogle Scholar
  4. Allen, J. J., & Mertens, R. (2008). Limitations to the detection of deception: True and false recollections are poorly distinguished using an event-related potential procedure. Social Neuroscience, 23, 1–18. doi: 10.1080/17470910802109939.CrossRefGoogle Scholar
  5. Ben-Shakhar, G., & Elaad, E. (2003). The validity of psychophysiological detection of information with the guilty knowledge test: A meta-analytic review. The Journal of Applied Psychology, 88, 131–151. doi: 10.1037/0021-9010.88.1.131.PubMedCrossRefGoogle Scholar
  6. Birbaumer, N. (2006). Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43, 517–532. doi: 10.1111/j.1469-8986.2006.00456.x.PubMedCrossRefGoogle Scholar
  7. Elaad, E. (2009). Effects of context and state of guilt on the detection of concealed crime information. International Journal of Psychophysiology, 71, 225–234. doi: 10.1016/j.ijpsycho.2008.10.001.PubMedCrossRefGoogle Scholar
  8. Elaad, E., & Ben-Shakhar, G. (1989). Effects of motivation level and verbal response type on psychophysiological detection in the guilty knowledge test. Psychophysiology, 26, 442–451. doi: 10.1111/j.1469-8986.1989.tb01950.x.PubMedCrossRefGoogle Scholar
  9. Farwell, L. A., & Donchin, E. (1991). The truth will out: Interrogative polygraphy (“lie detection”) with event-related brain potentials. Psychophysiology, 28, 531–547. doi: 10.1111/j.1469-8986.1991.tb01990.x.PubMedCrossRefGoogle Scholar
  10. Furedy, J. J., & Ben-Shakhar, G. (1991). The roles of deception, intention to deceive, and motivation to avoid detection in the psychophysiological detection of guilty knowledge. Psychophysiology, 28, 163–170. doi: 10.1111/j.1469-8986.1991.tb00407.x.PubMedCrossRefGoogle Scholar
  11. Ganis, G., Kosslyn, S. M., Stose, S., Thompson, W. L., & Yurgelun-Todd, D. A. (2003). Neural correlates of different types of deception: An fMRI investigation. Cerebral Cortex (New York, N.Y.), 13, 830–836. doi: 10.1093/cercor/13.8.830.CrossRefGoogle Scholar
  12. Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484. doi: 10.1016/0013-4694(83)90135-9.PubMedCrossRefGoogle Scholar
  13. Gustafson, L. A., & Orne, M. T. (1965). The effects of perceived role and role success on detection of deception. The Journal of Applied Psychology, 49, 412–417. doi: 10.1037/h0022798.PubMedCrossRefGoogle Scholar
  14. Honts, C. R., & Amato, S. (2002). Countermeasures. In M. Kleiner (Ed.), Handbook of polygraph testing (pp. 251–264). New York: Academic Press.Google Scholar
  15. Iacono, W. G. (2007). Detection of deception. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 688–703). Cambridge: Cambridge University Press.Google Scholar
  16. Johnson, R., Jr. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23, 367–384. doi: 10.1111/j.1469-8986.1986.tb00649.x.PubMedCrossRefGoogle Scholar
  17. Johnson, R., Jr. (1988). The amplitude of the P300 component of the event-related potential: Review and synthesis. In P. K. Ackles, J. R. Jennings, & M. G. H. Coles (Eds.), Advances in psychophysiology (Vol. 3, pp. 69–138). Greenwich: JAI Press.Google Scholar
  18. Johnson, R., Jr., Barnhardt, J., & Zhu, J. (2003). The deceptive response: Effects of response conflict and strategic monitoring on the late positive component and episodic memory-related brain activity. Biological Psychology, 64, 217–253. doi: 10.1016/j.biopsycho.2003.07.006.PubMedCrossRefGoogle Scholar
  19. Johnson, R., Jr., Barnhardt, J., & Zhu, J. (2004). The contribution of executive process to deceptive responding. Neuropsychologia, 42, 878–901. doi: 10.1016/j.neuropsychologia.2003.12.005.PubMedCrossRefGoogle Scholar
  20. Johnson, R., Jr., Barnhardt, J., & Zhu, J. (2005). Differential effects of practice on the executive processes used for truthful and deceptive responses: An event-related brain potential study. Brain Research. Cognitive Brain Research, 24, 386–404. doi: 10.1016/j.cogbrainres.2005.02.011.PubMedCrossRefGoogle Scholar
  21. Johnson, R., Jr, & Donchin, E. (1980). P300 and stimulus categorization: Two plus one is not so different from one plus one. Psychophysiology, 17, 167–178. doi: 10.1111/j.1469-8986.1980.tb00131.x.PubMedCrossRefGoogle Scholar
  22. Katayama, J., & Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 23–33. doi: 10.1017/S0048577298961479.PubMedCrossRefGoogle Scholar
  23. Langleben, D. D., Schroeder, L., Maldjian, J. A., Gur, R. C., McDonald, S., Ragland, J. D., et al. (2002). Brain activity during simulated deception: An event-related functional magnetic resonance study. NeuroImage, 15, 727–732. doi: 10.1006/nimg.2001.1003.PubMedCrossRefGoogle Scholar
  24. Lykken, D. (1959). The GSR in the detection of guilt. The Journal of Applied Psychology, 43, 385–388. doi: 10.1037/h0046060.CrossRefGoogle Scholar
  25. Lykken, D. (1998). A tremor in the blood. Uses and abuses of the lie detector (2nd ed.). New York: Plenum Trade.Google Scholar
  26. Magliero, A., Bashore, T. R., Coles, M. G., & Donchin, E. (1984). On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology, 21, 171–186. doi: 10.1111/j.1469-8986.1984.tb00201.x.PubMedCrossRefGoogle Scholar
  27. Meijer, E. H., Smulders, F. T., Merckelbach, H. L., & Wolf, A. G. (2007). The P300 is sensitive to concealed face recognition. International Journal of Psychophysiology, 66, 231–237. doi: 10.1016/j.ijpsycho.2007.08.001.PubMedCrossRefGoogle Scholar
  28. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. doi: 10.1016/0028-3932(71)90067-4.PubMedCrossRefGoogle Scholar
  29. Phan, K. L., Magalhaes, A., Ziemlewicz, T. J., Fitzgerald, D. A., Green, C., & Smith, W. (2005). Neural correlates of telling lies: A functional magnetic resonance imaging study at 4 tesla. Academic Radiology, 12, 164–172. doi: 10.1016/j.acra.2004.11.023.PubMedCrossRefGoogle Scholar
  30. Rosenfeld, J. P. (2005). “Brain fingerprinting”: A critical analysis. The Scientific Review of Mental Health Practice, 4, 20–37.Google Scholar
  31. Rosenfeld, J. P., Biroschak, J. R., & Furedy, J. J. (2006). P300-based detection of concealed autobiographical versus incidentally acquired information in target and non-target paradigms. International Journal of Psychophysiology, 60, 251–259. doi: 10.1016/j.ijpsycho.2005.06.002.PubMedCrossRefGoogle Scholar
  32. Rosenfeld, J. P., Biroschak, J. R., Kleschen, M. J., & Smith, K. M. (2005). Subjective and objective probability effects on P300 amplitude revisited. Psychophysiology, 42, 356–359. doi: 10.1111/j.1469-8986.2005.00283.x.PubMedCrossRefGoogle Scholar
  33. Rosenfeld, J. P., Cantwell, B., Nasman, V. T., Wojdac, V., Ivanov, S., & Mazzeri, L. (1988). A modified, event-related potential-based guilty knowledge test. The International Journal of Neuroscience, 42, 157–161. doi: 10.3109/00207458808985770.PubMedCrossRefGoogle Scholar
  34. Rosenfeld, J. P., Labkovsky, E., Winograd, M., Lui, M., Vandenboom, C., & Chedid, E. (2008). The complex trial protocol (CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology, 45, 906–919. doi: 10.1111/j.1469-8986.2008.00708.x.PubMedCrossRefGoogle Scholar
  35. Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple, effective countermeasures to P300-based test of detection of concealed information. Psychophysiology, 41, 205–219. doi: 10.1111/j.1469-8986.2004.00158.x.PubMedCrossRefGoogle Scholar
  36. Sasaki, M., Hira, S., & Matsuda, T. (2001). P300, detection of deception, mental countermeasure (In Japanese with English abstract). Japanese Journal of Phycology, 72, 322–328.Google Scholar
  37. Verschuere, B., Rosenfeld, J. P., Winograd, M., Labkovsky, E., & Wiersema, J. R. (2009). The role of deception in P300 memory detection. Legal and Criminological Psychology, (in press).Google Scholar
  38. Wasserman, S., & Bockenholt, U. (1989). Bootstrapping: Applications to psychophysiology. Psychophysiology, 26, 208–221. doi: 10.1111/j.1469-8986.1989.tb03159.x.PubMedCrossRefGoogle Scholar
  39. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Graduate School of Integrated Arts and SciencesHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations